

Introduction to Machine Learning

NYU K12 STEM Education: Machine Learning

Department of Electrical and Computer Engineering, NYU Tandon School of Engineering Brooklyn, New York

- ► Course Website
- ► Instructors:

Rugved Mhatre Akshath Mahajan rugved.mhatre@nyu.edu akshathmahajan@nyu.edu

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
●0	000000	0000000000000	000000	oo
Outline				

1. Supervised Learning

- 2. Unsupervised Learning
- 3. Advanced Problems
- 4. Social Impact of ML
- 5. Course Takeaways

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
o●	000000	0000000000000	000000	oo
Supervised Learn	ing			

This is exactly what we've been doing so far

- ▶ This is exactly what we've been doing so far
- In a supervised setting, we have inputs and corresponding their outputs

Supervised Learning

- This is exactly what we've been doing so far
- In a supervised setting, we have inputs and corresponding their outputs
- Let's look at a few advanced supervised problems later!

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	●00000	0000000000000	000000	oo
Outline				

1. Supervised Learning

2. Unsupervised Learning

3. Advanced Problems

4. Social Impact of ML

5. Course Takeaways

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	o●oooo	0000000000000	000000	oo
Unsupervised Lea	arning			

What if we don't have labelled data for the given task?

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	o●oooo	0000000000000	000000	oo
Unsupervised Lea	arning			

- What if we don't have labelled data for the given task?
- ▶ The dataset still holds structure, we just don't have access to it

Figure 1: Supervised vs Unsupervised Learning

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	o●oooo	0000000000000	000000	oo
Unsupervised Le	arning			

- What if we don't have labelled data for the given task?
- The dataset still holds structure, we just don't have access to it
- Or what if there is a need to create data?
- Example Clustering, Generative Al, etc.

Figure 1: Supervised vs Unsupervised Learning

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	o●oooo	0000000000000	000000	oo
Uncurrenticed L	orning			

Unsupervised Learning

- What if we don't have labelled data for the given task?
- ▶ The dataset still holds structure, we just don't have access to it
- Or what if there is a need to create data?
- Example Clustering, Generative AI, etc.
- Let's look at some unsupervised models

Figure 1: Supervised vs Unsupervised Learning

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	oo●ooo	0000000000000	000000	oo
Clustering				

Figure 2: Problem Statement

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	000000	0000000000000	000000	oo
KMeans Clusterin	g			

▶ Works by selecting 'k' arbitrary centroids for clusters

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	000●00	0000000000000	000000	oo
KMeans Clusterir	na			

- ► Works by selecting 'k' arbitrary centroids for clusters
- Euclidian Distance is used to assign points to a cluster
- (We can use other measures as well)

- ► Works by selecting 'k' arbitrary centroids for clusters
- Euclidian Distance is used to assign points to a cluster
- (We can use other measures as well)
- Centroids are updated and points are reassigned till convergence

KMeans Clustering

- ▶ Works by selecting 'k' arbitrary centroids for clusters
- Euclidian Distance is used to assign points to a cluster
- (We can use other measures as well)
- Centroids are updated and points are reassigned till convergence
- Let's see a step-by-step Visualization!

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	000000	0000000000000	000000	oo
KMeans - Drawb	acks			

What drawbacks can it have?

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	oooo●o	0000000000000	000000	oo
KMeans - Drawba	cks			

- What drawbacks can it have?
 - ▶ *k* matters a lot!

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	000000	0000000000000	000000	oo
KMeans - Drawha	acks			

- ► What drawbacks can it have?
 - ▶ *k* matters a lot!
 - ▶ The algorithm depends heavily on the initial centroids

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	000000	0000000000000	000000	oo
KMeans - Drawba	acks			

- What drawbacks can it have?
 - ▶ k matters a lot!
 - ▶ The algorithm depends heavily on the initial centroids
 - categorical data doesn't have a natural notion of distance or similarity

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	ooooo●	0000000000000	000000	oo
KMeans - Evaluat	ion			

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	00000	0000000000000	000000	oo
KMeans - Evaluat	tion			

- How to evaluate the model? We don't have any labels?
- ▶ Inertia (J) measures the sum of squared distances between data points (x_i) and their assigned cluster centroids (μ_k) .

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	00000	0000000000000	000000	oo
KMeans - Evaluat	ion			

- How to evaluate the model? We don't have any labels?
- ▶ Inertia (J) measures the sum of squared distances between data points (x_i) and their assigned cluster centroids (μ_k) .
- ▶ Goal: Have low inertia!

Figure 3: Elbow Method

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	00000	0000000000000	000000	oo
KMeans - Evaluat	ion			

- How to evaluate the model? We don't have any labels?
- ▶ Inertia (J) measures the sum of squared distances between data points (x_i) and their assigned cluster centroids (μ_k) .
- ▶ Goal: Have low inertia!

Figure 3: Elbow Method

Let's try a notebook!

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	000000	●0000000000000	000000	oo
Outline				

1. Supervised Learning

2. Unsupervised Learning

3. Advanced Problems

4. Social Impact of ML

5. Course Takeaways

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	000000	ooooooooooooo	000000	oo
Object Detection				

 \blacktriangleright Divides the image into $n \times n$ grid-cells, which detects objects whose center falls within the cell

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	000000	000000000000	000000	oo
Object Detection				

- \blacktriangleright Divides the image into $n \times n$ grid-cells, which detects objects whose center falls within the cell
- ► For each grid cell, Yolo:

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	000000	0000000000000	000000	oo
Object Detection				

- ► Divides the image into *n* × *n* grid-cells, which detects objects whose center falls within the cell
- ► For each grid cell, Yolo:
 - Predicts B bounding boxes and its box confidence score
 - Each box will have its class probability
 - Output contains box coordinates, confidence scores, and class probabilities for each grid cell.

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	000000		000000	oo
Object Detection				

- ► Divides the image into *n* × *n* grid-cells, which detects objects whose center falls within the cell
- ► For each grid cell, Yolo:
 - Predicts B bounding boxes and its box confidence score
 - Each box will have its class probability
 - Output contains box coordinates, confidence scores, and class probabilities for each grid cell.
- Finally duplicate detections of the same object are suppressed using non-max suppression

Supervised Learning oo	Unsupervised Learning 000000	Advanced Problems	Social Impact of ML 000000	Course Takeaways
Object Detection				

Figure 4: Yolo Object Detection (Source)

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	000000	000000000000	000000	oo

Semantic Segmentation

Every Pixel is associated with a class

0: Background/Unknown 1: Person 2: Purse 3: Plants/Grass 4: Sidewalk 5: Building/Structures

Figure 5: Semantic Segmentation (Source)

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	000000		000000	oo

Semantic Segmentation

- Every Pixel is associated with a class
- UNets having Encoder-decoder structure are really powerful

0: Background/Unknown 1: Person 2: Purse 3: Plants/Grass 4: Sidewalk 5: Building/Structures

Figure 5: Semantic Segmentation (Source)

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	000000		000000	oo
Semantic Segmentation				

- Every Pixel is associated with a class
- UNets having Encoder-decoder structure are really powerful
- Decode using transposed convolution/deconvolution

0: Background/Unknown 1: Person 2: Purse 3: Plants/Grass 4: Sidewalk 5: Building/Structures

Figure 5: Semantic Segmentation (Source)

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	000000	000000000000	000000	oo

AutoEncoders

Encoder-Decoder structure

 $\| loss = \| x - \hat{x} \|_2 = \| x - d_{\phi}(z) \|_2 = \| x - d_{\phi}(e_{ heta}(x)) \|_2$

Figure 6: AutoEncoder structure (Source)

NYU Tandon School of Engineering

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	000000	000000000000	000000	oo
AutoEncoders				

- Encoder-Decoder structure
- Encoder helps in creating latent representations

 $loss = \|x - \hat{x}\|_2 = \|x - d_{\phi}(z)\|_2 = \|x - d_{\phi}(e_{ heta}(x))\|_2$

Figure 6: AutoEncoder structure (Source)

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	000000		000000	oo
AutoEncoders				

- Encoder-Decoder structure
- Encoder helps in creating latent representations
- Decoder helps in generating outputs from the latent representation

 $\| loss = \| x - \hat{x} \|_2 = \| x - d_{\phi}(z) \|_2 = \| x - d_{\phi}(e_{ heta}(x)) \|_2$

Figure 6: AutoEncoder structure (Source)

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	000000	000000000000	000000	oo

Denoising AutoEncoders

Figure 7: Denoising AutoEncoders

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	000000		000000	oo

Variational AutoEncoders

 $loss = reconstruction \; loss + similarity \; loss$

Figure 8: Variational AutoEncoders (Source)

Supervised Learning oo	Unsupervised Learni 000000	Advanced Problems 00000000000000	Social Impact of 000000	f ML Course Takeaways oo

- Goal: Generate samples never seen before
- There are 2 networks:

- Goal: Generate samples never seen before
- ► There are 2 networks:
 - Generator: Generate fake samples from noise that appear similar to real samples

- Goal: Generate samples never seen before
- ► There are 2 networks:
 - Generator: Generate fake samples from noise that appear similar to real samples
 - Discriminator: Tell apart real and fake samples

- Goal: Generate samples never seen before
- ► There are 2 networks:
 - Generator: Generate fake samples from noise that appear similar to real samples
 - Discriminator: Tell apart real and fake samples
- Generator aims to fool the discriminator
- Both learn from each other

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	000000		000000	oo

2015 2016 2017 Figure 10: Progress of GANs Unsupervised Learnin

Social Impact of ML 000000 Course Takeaways

GANs - Generative Adverserial Networks

Figure 11: Cats that don't exist

Applications of GANs - Image Coloring

Figure 12: Image colorization (Source)

Applications of GANs - Image Synthesis

Figure 13: Image Synthesis (Source)

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	000000	0000000000000	000000	oo
Applications of	GANs - Image Supe			

Figure 14: Image Super Resolution

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	000000	0000000000000	●00000	oo
Outline				

1. Supervised Learning

2. Unsupervised Learning

3. Advanced Problems

4. Social Impact of ML

5. Course Takeaways

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	000000	0000000000000	o●oooo	oo
Bias in Models				

- Neural Networks before training have randomly initialized weights
- It trains on a given dataset

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	000000	0000000000000	o●oooo	oo
Bias in Models				

- Neural Networks before training have randomly initialized weights
- It trains on a given dataset
- Do the models harbor any discriminatory properties (racism, sexism, homophobia, or transphobia)?

- Neural Networks before training have randomly initialized weights
- It trains on a given dataset
- Do the models harbor any discriminatory properties (racism, sexism, homophobia, or transphobia)?
- ▶ No! It isn't sentient. But it may have biased outputs

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	000000	0000000000000	00000	oo
Example of Bias				

PULSE is a face depixelizing algorithm -

Figure 15: Bias shown in Models

So where does this Bias come from?

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	oooooo	0000000000000	000●00	oo
Bias in Models				

- Answer 1 Underrepresented classes in a dataset
- Example: Less number of positive cases in the dataset

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	000000	0000000000000	000●00	oo
Bias in Models				

- Answer 1 Underrepresented classes in a dataset
- Example: Less number of positive cases in the dataset
- Bias not inherent in data
- CelebA dataset has images of "traditionally attractive", predomintally white and cis people with heavy makup, which are potentially photoshopped.
- In the real world, this is not the case

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	000000	0000000000000	0000●0	oo
Peal-world biases	leak into Machine I	earning		

Bias comes from Biased Data, not the model having any bigotry

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	000000	0000000000000	0000●0	oo
Real-world biases	leak into Machine I	earning		

- Bias comes from Biased Data, not the model having any bigotry
- ► Examples:

- Bias comes from Biased Data, not the model having any bigotry
- Examples:
 - Al in Law Enforcement: Biases and Racism in Law Enforcement can leak into model predictions.

- Bias comes from Biased Data, not the model having any bigotry
- Examples:
 - Al in Law Enforcement: Biases and Racism in Law Enforcement can leak into model predictions.
 - Dataset Generation might often be biased due to engineers not realizing the importance of diversity

- Bias comes from Biased Data, not the model having any bigotry
- Examples:
 - Al in Law Enforcement: Biases and Racism in Law Enforcement can leak into model predictions.
 - Dataset Generation might often be biased due to engineers not realizing the importance of diversity
 - When Google Translate converts news articles written in Spanish into English, phrases referring to women often become 'he said' or 'he wrote'.

- Bias comes from Biased Data, not the model having any bigotry
- Examples:
 - Al in Law Enforcement: Biases and Racism in Law Enforcement can leak into model predictions.
 - Dataset Generation might often be biased due to engineers not realizing the importance of diversity
 - When Google Translate converts news articles written in Spanish into English, phrases referring to women often become 'he said' or 'he wrote'.
 - Chat bot trained on data from tweets "Tay" learns to be racist and sexist as a result of the sheer number bigoted twitter users

- Bias comes from Biased Data, not the model having any bigotry
- Examples:
 - Al in Law Enforcement: Biases and Racism in Law Enforcement can leak into model predictions.
 - Dataset Generation might often be biased due to engineers not realizing the importance of diversity
 - When Google Translate converts news articles written in Spanish into English, phrases referring to women often become 'he said' or 'he wrote'.
 - Chat bot trained on data from tweets "Tay" learns to be racist and sexist as a result of the sheer number bigoted twitter users
- What can we do?

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	000000	0000000000000	00000●	oo
Safety of Al				

The same model has drastically different performance for different hyperparameters.

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	000000	0000000000000	00000●	oo
Safety of AI				

- The same model has drastically different performance for different hyperparameters.
- Should we let a medical robot with CNN-based vision system perform surgery autonomously?

- The same model has drastically different performance for different hyperparameters.
- Should we let a medical robot with CNN-based vision system perform surgery autonomously?
- If a self-driving car crashes and hurts people, who should be responsible for it?

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	000000	0000000000000	000000	●0
Outline				

1. Supervised Learning

2. Unsupervised Learning

3. Advanced Problems

4. Social Impact of ML

5. Course Takeaways

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	000000	0000000000000	000000	o●
Course Takeaway				

▶ ML is the combination of math and computer science.

Supervised Learning	Unsupervised Learning	Advanced Problems	Social Impact of ML	Course Takeaways
oo	000000	0000000000000	000000	o●
Course Takeaway				

- ML is the combination of math and computer science.
- We've only shown you a subsection
 - Supervised Learning: Linear/Logistic Regression and Neural Networks

Course Takeaway

- ML is the combination of math and computer science.
- We've only shown you a subsection
 - Supervised Learning: Linear/Logistic Regression and Neural Networks
- Deep learning has wide applications, but we are also responsible for its consequences. —The greater the power, the greater the responsibility!