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Supervised Learning

▶ This is exactly what we’ve been doing so far

▶ In a supervised setting, we have inputs and corresponding their
outputs

▶ Let’s look at a few advanced supervised problems later!
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Unsupervised Learning

▶ What if we don’t have labelled data for the given task?

▶ The dataset still holds structure, we just don’t have access to it
▶ Or what if there is a need to create data?
▶ Example - Clustering, Generative AI, etc.
▶ Let’s look at some unsupervised models
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Clustering

Figure 2: Problem Statement
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KMeans Clustering

▶ Works by selecting ’k’ arbitrary centroids for clusters

▶ Euclidian Distance is used to assign points to a cluster
▶ (We can use other measures as well)
▶ Centroids are updated and points are reassigned till convergence
▶ Let’s see a step-by-step Visualization!
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KMeans - Drawbacks

▶ What drawbacks can it have?

▶ k matters a lot!
▶ The algorithm depends heavily on the initial centroids
▶ categorical data doesn’t have a natural notion of distance or similarity
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KMeans - Evaluation

▶ How to evaluate the model? We don’t have any labels?

▶ Inertia (J) measures the sum of squared distances between data
points (xi) and their assigned cluster centroids (µk).

▶ Goal: Have low inertia!
▶ Let’s try a notebook!
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Object Detection

▶ Divides the image into n× n grid-cells, which detects objects whose
center falls within the cell

▶ For each grid cell, Yolo:

▶ Predicts B bounding boxes and its box confidence score
▶ Each box will have its class probability
▶ Output contains box coordinates, confidence scores, and class

probabilities for each grid cell.

▶ Finally duplicate detections of the same object are suppressed using
non-max suppression
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Object Detection

Figure 4: Yolo Object Detection
(Source)

NYU Tandon School of Engineering NYU K12 STEM Education: Machine Learning

(https://pjreddie.com/darknet/yolo/)


Supervised Learning Unsupervised Learning Advanced Problems Social Impact of ML Course Takeaways

Semantic Segmentation

▶ Every Pixel is associated with a class

▶ UNets having Encoder-decoder structure are really powerful
▶ Decode using transposed convolution/deconvolution

Figure 5: Semantic Segmentation
(Source)
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AutoEncoders

▶ Encoder-Decoder structure

▶ Encoder helps in creating latent representations
▶ Decoder helps in generating outputs from the latent representation

Figure 6: AutoEncoder structure
(Source)
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Denoising AutoEncoders

Figure 7: Denoising AutoEncoders
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Variational AutoEncoders

Figure 8: Variational AutoEncoders
(Source)
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GANs - Generative Adverserial Networks

▶ Goal: Generate samples never seen before

▶ There are 2 networks:

▶ Generator: Generate fake samples from noise that appear similar to
real samples

▶ Discriminator: Tell apart real and fake samples

▶ Generator aims to fool the discriminator
▶ Both learn from each other
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GANs - Generative Adverserial Networks

Figure 9: GANs - Architecture
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GANs - Generative Adverserial Networks

Figure 10: Progress of GANs
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GANs - Generative Adverserial Networks

Figure 11: Cats that don’t exist
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Applications of GANs - Image Coloring

Figure 12: Image colorization
(Source)
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Applications of GANs - Image Synthesis

Figure 13: Image Synthesis
(Source)

NYU Tandon School of Engineering NYU K12 STEM Education: Machine Learning

https://github.com/NVlabs/SPADE


Supervised Learning Unsupervised Learning Advanced Problems Social Impact of ML Course Takeaways

Applications of GANs - Image Super Resolution

Figure 14: Image Super Resolution
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Bias in Models

▶ Neural Networks before training have randomly initialized weights
▶ It trains on a given dataset

▶ Do the models harbor any discriminatory properties (racism, sexism,
homophobia, or transphobia)?

▶ No! It isn’t sentient. But it may have biased outputs
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Example of Bias

▶ PULSE is a face depixelizing algorithm -

Figure 15: Bias shown in Models

▶ So where does this Bias come from?
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Bias in Models

▶ Answer 1 - Underrepresented classes in a dataset
▶ Example: Less number of positive cases in the dataset

▶ Bias not inherent in data
▶ CelebA dataset has images of "traditionally attractive", predomintally

white and cis people with heavy makup, which are potentially
photoshopped.

▶ In the real world, this is not the case
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Real-world biases leak into Machine Learning

▶ Bias comes from Biased Data, not the model having any bigotry

▶ Examples:

▶ AI in Law Enforcement: Biases and Racism in Law Enforcement can
leak into model predictions.

▶ Dataset Generation might often be biased due to engineers not
realizing the importance of diversity

▶ When Google Translate converts news articles written in Spanish into
English, phrases referring to women often become ‘he said’ or ‘he
wrote’.

▶ Chat bot trained on data from tweets ”Tay” learns to be racist and sexist
as a result of the sheer number bigoted twitter users

▶ What can we do?
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Safety of AI

▶ The same model has drastically different performance for different
hyperparameters.

▶ Should we let a medical robot with CNN-based vision system
perform surgery autonomously?

▶ If a self-driving car crashes and hurts people, who should be
responsible for it?
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Course Takeaway

▶ ML is the combination of math and computer science.

▶ We’ve only shown you a subsection

▶ Supervised Learning: Linear/Logistic Regression and Neural Networks

▶ Deep learning has wide applications, but we are also responsible for
its consequences. —The greater the power, the greater the
responsibility!
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