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Grayscale Images

▶ Images are stored as arrays of quantized numbers in computers

▶ 2Dmatrices with each entry specifying the intensity (brightness) of a
pixel

▶ Pixel values range from 0 to 255, 0 being the darkest, 255 being the
brightest
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Figure 1: A 3x3 Grayscale Image
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Color Images

▶ Color (RGB) images have an extra dimension for color (3D array)
▶ Imagine three 2Dmatrices stacked together
▶ Each 2Dmatrix specifies the amount of color for Red, Green, and

Blue at each pixel

Figure 2: RGB Images

▶ Shape - (1050, 700, 3)
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Images and Neural Networks

▶ How to feed Images in a Fully Connected Network?

▶ Flatten the image!
▶ Does this make sense?

Is this how we see images?

▶ No consideration for spatial positions!!
▶ Howmany input neurons for 1024x1024 image?
▶ What about slightly rotated photographs?
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The Convolution Operation

▶ All these problems are solved by Convolutions!
▶ Convolution operation is applied on an image matrix X with a kernel

W

Z = X ⊛W
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▶ All these problems are solved by Convolutions!
▶ Convolution operation is applied on an image matrix X with a kernel

W

Z = X ⊛W

Figure 4: Convolution Operation
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The Convolution Operation

▶ Let’s see some visualizations!

Figure 5: Standard Convolution Operation
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The Convolution Operation

▶ Let’s see some visualizations!

Figure 5: Standard Convolution with Numbers
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Padding and Stride

Figure 6: Convolution with Padding

NYU Tandon School of Engineering NYU K12 STEM Education: Machine Learning



Review Working with Images Convolution Neural Networks Data Augmentation Normalization Dropout Transfer Learning

Why Convolution?

▶ With convolution, each output pixel depends on only the
neighboring pixels in the input

▶ This allows us to learn the positional relationship between pixels
▶ Different kernels capture different features from the image

NYU Tandon School of Engineering NYU K12 STEM Education: Machine Learning



Review Working with Images Convolution Neural Networks Data Augmentation Normalization Dropout Transfer Learning

Why Convolution?

▶ With convolution, each output pixel depends on only the
neighboring pixels in the input

▶ This allows us to learn the positional relationship between pixels

▶ Different kernels capture different features from the image

NYU Tandon School of Engineering NYU K12 STEM Education: Machine Learning



Review Working with Images Convolution Neural Networks Data Augmentation Normalization Dropout Transfer Learning

Why Convolution?

▶ With convolution, each output pixel depends on only the
neighboring pixels in the input

▶ This allows us to learn the positional relationship between pixels
▶ Different kernels capture different features from the image

NYU Tandon School of Engineering NYU K12 STEM Education: Machine Learning



Review Working with Images Convolution Neural Networks Data Augmentation Normalization Dropout Transfer Learning

Convolution for Multiple Channels

▶ There is a single kernel for each channel

▶ Each kernel performs a 2D convolution a its respective channel
▶ The results are then summed
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Convolution for Multiple Channels

▶ There is a single kernel for each channel
▶ Each kernel performs a 2D convolution a its respective channel
▶ The results are then summed

Figure 7: Convolution Across Channels
Source dl2.ai
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Max Pooling

▶ It is a down-sampling technique in Convolutional Neural Networks
▶ Reduces the dimensions of intermediate network results

▶ It provides "translational invariance". Why?

▶ Most prominent feature in every local region is preserved
▶ Focuses on the presence of features rather than their precise location
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Max Pooling

▶ Let’s see an example!

Figure 8: Max Pooling Example
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Scarcity of training data

▶ Large-scale deep learning models are extremely data hungry

▶ We don’t always have enough data to train the model
▶ Labelling data is expensive and time-consuming
▶ What can we do now?
▶ Create new images!
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Data Augmentation

▶ Key Idea: Augment existing images from the original dataset

▶ Similar enough to contain the same Subject as the original
▶ Different enough to prove meaningful for training
▶ Let’s look at some techniques for Data Augmentation
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Mirroring

Figure 9: Mirroring
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Rotation and Translation

Figure 10: Rotation and Translation
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Random Cropping

Figure 11: Random Cropping
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Color Shifting

Figure 12: Color Shifting
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Data Normalization

▶ Consider the dataset (xi, yi) ∀i ∈ {1, 2, 3..., N}

▶ Mean x̄ =
1

N

∑
xi

▶ Variance σ2 =
1

N

∑
(xi − x̄i)

2

▶ Normalization: Replace each xi with x′i, where:

x′i =
xi − x̄

σ

▶ The new dataset will have a mean of 0 and a variance of 1
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Data Normalization

▶ Consider a single weight w and bias b
▶ The contours in the plot represents the value of the loss function for

the given w and b

Figure 13: Unnormalized vs Normalized Descent
Source: TowardsDataScience
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Batch Normalization

▶ We can normalize inputs to the network. Why not do that to the
intermediate layer outputs

▶ Batch Normalization involves normalizing the inputs to each layer
within each mini-batch

▶ Batch normalization is applied before activation
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Batch Normalization

▶ We can normalize inputs to the network. Why not do that to the
intermediate layer outputs

▶ Batch Normalization involves normalizing the inputs to each layer
within each mini-batch

▶ Batch normalization is applied before activation

Figure 14: Batch Normalization
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Dropout

▶ This techinque is patented by Google

▶ Randomly disable neurons and their connections between each
other

▶ Without dropout, neurons can become too reliant on the outputs of
specific other neurons, leading to overfitting
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Dropout

▶ This techinque is patented by Google
▶ Randomly disable neurons and their connections between each

other

▶ Without dropout, neurons can become too reliant on the outputs of
specific other neurons, leading to overfitting

Figure 15: Dropout

NYU Tandon School of Engineering NYU K12 STEM Education: Machine Learning



Review Working with Images Convolution Neural Networks Data Augmentation Normalization Dropout Transfer Learning

Dropout

▶ This techinque is patented by Google
▶ Randomly disable neurons and their connections between each

other
▶ Without dropout, neurons can become too reliant on the outputs of

specific other neurons, leading to overfitting

Figure 15: Dropout

NYU Tandon School of Engineering NYU K12 STEM Education: Machine Learning



Review Working with Images Convolution Neural Networks Data Augmentation Normalization Dropout Transfer Learning

Dropout

▶ This is the same as using a neural network with the same amount of
layers but less neurons per layer.

▶ The more neurons the more powerful the neural network is, and the
more likely it is to overfit.

▶ This also means that the model can not rely on any single feature,
therefore would need to spread out the weights

Figure 16: Dropout
NYU Tandon School of Engineering NYU K12 STEM Education: Machine Learning
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Transfer Learning

▶ Key Idea: "Standing on the shoulder of Giants"

▶ Training large computer vision models requires extensive
hyperparameter search and multiple GPU running for weeks!

▶ Solution: Transfer Learning
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Transfer Learning

▶ Key Idea: "Standing on the shoulder of Giants"
▶ Training large computer vision models requires extensive

hyperparameter search and multiple GPU running for weeks!
▶ Solution: Transfer Learning

Figure 17: Transfer Learning
Source: Oreilly
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Transfer Learning

▶ Researchers now open-source their model weights, which can be a
great initialization point for your applications

▶ Often in practice, people preserve the feature extractor and re-train
the classification head

▶ Freeze the early layers and replace the last few to match your needs.
Only train the replaced layers

▶ This is similar to transferring the knowledge from one network to
another, thus the name transfer learning.
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