

Introduction to Machine Learning

NYU K12 STEM Education: Machine Learning

Department of Electrical and Computer Engineering, NYU Tandon School of Engineering Brooklyn, New York

- ► Course Website
- ► Instructors:

Rugved Mhatre Akshath Mahajan rugved.mhatre@nyu.edu akshathmahajan@nyu.edu

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
●0	0000	00000000	0000000	0000	000	000
Outlin	le					

1. Review

- 2. Working with Images
- 3. Convolution Neural Networks
- 4. Data Augmentation
- 5. Normalization
- 6. Dropout
- 7. Transfer Learning

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
o●	0000	0000000	0000000	0000	000	000

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	●000	00000000	0000000	0000	000	000
Outlin						

1. Review

2. Working with Images

- 3. Convolution Neural Networks
- 4. Data Augmentation
- 5. Normalization
- 6. Dropout
- 7. Transfer Learning

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
00	o●oo	00000000	0000000	0000	000	000
Grays	cale Images					

Images are stored as arrays of quantized numbers in computers

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	o●oo	0000000	0000000	0000	000	000
Grays	cale Images					

- Images are stored as arrays of quantized numbers in computers
- 2D matrices with each entry specifying the intensity (brightness) of a pixel

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	o●oo	00000000	0000000	0000	000	000
Grays	cale Images					

- Images are stored as arrays of quantized numbers in computers
- 2D matrices with each entry specifying the intensity (brightness) of a pixel
- Pixel values range from 0 to 255, 0 being the darkest, 255 being the brightest

Figure 1: A 3x3 Grayscale Image

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	oo●o	00000000	0000000	0000	000	000
Color	Images					

- Color (RGB) images have an extra dimension for color (3D array)
- Imagine three 2D matrices stacked together
- Each 2D matrix specifies the amount of color for Red, Green, and Blue at each pixel

Figure 2: RGB Images

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	oo●o	00000000	0000000	0000	000	000
Color	Images					

- Color (RGB) images have an extra dimension for color (3D array)
- Imagine three 2D matrices stacked together
- Each 2D matrix specifies the amount of color for Red, Green, and Blue at each pixel

Figure 2: RGB Images

Shape - (1050, 700, 3)

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo		0000000	0000000	0000	000	000
Image	es and Neural N	letworks				

▶ How to feed Images in a Fully Connected Network?

Images and Neural Networks

- How to feed Images in a Fully Connected Network?
- Flatten the image!

Figure 3: Flattening an Image

Images and Neural Networks

- How to feed Images in a Fully Connected Network?
- Flatten the image!

Figure 3: Flattening an Image

Does this make sense? Is this how we see images?

- ► How to feed Images in a Fully Connected Network?
- Flatten the image!

Figure 3: Flattening an Image

- Does this make sense? Is this how we see images?
 - No consideration for spatial positions!!
 - How many input neurons for 1024x1024 image?
 - What about slightly rotated photographs?

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000	●0000000	0000000	0000	000	000
Outlin)e					

1. Review

2. Working with Images

3. Convolution Neural Networks

- 4. Data Augmentation
- 5. Normalization
- 6. Dropout

7. Transfer Learning

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000	0000000	0000000	0000	000	000
The C	onvolution Ope	eration				

- All these problems are solved by Convolutions!
- Convolution operation is applied on an image matrix X with a kernel W

 $Z=X\circledast W$

- All these problems are solved by Convolutions!
- Convolution operation is applied on an image matrix X with a kernel W

$$Z = X \circledast W$$

Figure 4: Convolution Operation

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000		0000000	0000	000	000

The Convolution Operation

Let's see some visualizations!

Figure 5: Standard Convolution Operation

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000		0000000	0000	000	000

The Convolution Operation

Figure 5: Standard Convolution with Numbers

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
00	0000		0000000	0000	000	000

Padding and Stride

Figure 6: Convolution with Padding

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
00	0000	00000000	0000000	0000	000	000
Why (Convolution?					

 With convolution, each output pixel depends on only the neighboring pixels in the input

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
00	0000		0000000	0000	000	000
Why (Convolution?					

- With convolution, each output pixel depends on only the neighboring pixels in the input
- ▶ This allows us to learn the positional relationship between pixels

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000		0000000	0000	000	000
Why (Convolution?					

- With convolution, each output pixel depends on only the neighboring pixels in the input
- ▶ This allows us to learn the positional relationship between pixels
- Different kernels capture different features from the image

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000	oooooooo	0000000	0000	000	000

Convolution for Multiple Channels

▶ There is a single kernel for each channel

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000	oooooooo	0000000	0000	000	000

Convolution for Multiple Channels

- ▶ There is a single kernel for each channel
- Each kernel performs a 2D convolution a its respective channel

- ► There is a single kernel for each channel
- Each kernel performs a 2D convolution a its respective channel
- The results are then summed

Figure 7: Convolution Across Channels Source dl2.ai

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000	000000●0	0000000	0000	000	
Max P	ooling					

- It is a down-sampling technique in Convolutional Neural Networks
- Reduces the dimensions of intermediate network results

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000		0000000	0000	000	000
Max P	ooling					

- It is a down-sampling technique in Convolutional Neural Networks
- Reduces the dimensions of intermediate network results
- It provides "translational invariance". Why?

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000	000000●0	0000000	0000	000	000
Max F	Pooling					

- It is a down-sampling technique in Convolutional Neural Networks
- Reduces the dimensions of intermediate network results
- It provides "translational invariance". Why?
 - Most prominent feature in every local region is preserved
 - ▶ Focuses on the presence of features rather than their precise location

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000	0000000●	0000000	0000	000	000
Max F	Poolina					

Let's see an example!

Figure 8: Max Pooling Example

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000		●000000	0000	000	000
Outlin)e					

1. Review

- 2. Working with Images
- 3. Convolution Neural Networks

4. Data Augmentation

- 5. Normalization
- 6. Dropout

7. Transfer Learning

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000		o●ooooo	0000	000	000
Scarci	ty of training d	ata				

Large-scale deep learning models are extremely data hungry

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000	0000000	o●ooooo	0000	000	000
Scarci	ty of training d	ata				

- Large-scale deep learning models are extremely data hungry
- We don't always have enough data to train the model
- Labelling data is expensive and time-consuming

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000	0000000	o●ooooo	0000	000	000
Scarci	ty of training d	ata				

- Large-scale deep learning models are extremely data hungry
- We don't always have enough data to train the model
- Labelling data is expensive and time-consuming
- What can we do now?

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000		o●ooooo	0000	000	000
Scarci	ity of training d	ata				

- Large-scale deep learning models are extremely data hungry
- We don't always have enough data to train the model
- Labelling data is expensive and time-consuming
- What can we do now?
- Create new images!

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000		oo●oooo	0000	000	000
Data A	Augmentation					

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000	00000000	oo●oooo	0000	000	000
Data /	Augmentation					

- Key Idea: Augment existing images from the original dataset
- Similar enough to contain the same Subject as the original
- Different enough to prove meaningful for training

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000	00000000	oo●oooo	0000	000	000
Data /	Augmentation					

- Key Idea: Augment existing images from the original dataset
- Similar enough to contain the same Subject as the original
- Different enough to prove meaningful for training
- Let's look at some techniques for Data Augmentation

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000	00000000		0000	000	000
Mirro	rina					

Figure 9: Mirroring

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000		0000●00	0000	000	000

Rotation and Translation

Figure 10: Rotation and Translation

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000	0000000	ooooo●o	0000	000	000
Dande	om Cropping					

Random Cropping

Figure 11: Random Cropping

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000	0000000	000000●	0000	000	000
Color	Shifting					

Figure 12: Color Shifting

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000	0000000	0000000	•000	000	000
Outlir	ne					

1. Review

- 2. Working with Images
- 3. Convolution Neural Networks
- 4. Data Augmentation

5. Normalization

6. Dropout

7. Transfer Learning

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
00	0000	00000000	0000000	o●oo	000	000
Data I	Normalization					

• Consider the dataset $(x_i, y_i) \ \forall i \in \{1, 2, 3..., N\}$

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000	00000000	0000000	o●oo	000	000
Data I	Normalization					

• Consider the dataset $(x_i, y_i) \forall i \in \{1, 2, 3..., N\}$

• Mean
$$\bar{x} = \frac{1}{N} \sum x_i$$

• Variance $\sigma^2 = \frac{1}{N} \sum (x_i - \bar{x}_i)^2$

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000	0000000	0000000	o●oo	000	000
Data I	Normalization					

• Consider the dataset $(x_i, y_i) \ \forall i \in \{1, 2, 3..., N\}$

• Mean
$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

• Variance
$$\sigma^2 = \frac{1}{N} \sum (x_i - \bar{x}_i)^2$$

▶ Normalization: Replace each x_i with x'_i , where:

$$x_i' = \frac{x_i - \bar{x}}{\sigma}$$

The new dataset will have a mean of 0 and a variance of 1

- Consider a single weight w and bias b
- The contours in the plot represents the value of the loss function for the given w and b

Figure 13: Unnormalized vs Normalized Descent Source: TowardsDataScience

Review oo	Working with Images 0000	Convolution Neural Networks	Data Augmentation 0000000	Normalization	Dropout 000	Transfer Learning 000
Batch	Normalization					

We can normalize inputs to the network. Why not do that to the intermediate layer outputs

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000		0000000	000●	000	000
Batch	Normalization					

- We can normalize inputs to the network. Why not do that to the intermediate layer outputs
- Batch Normalization involves normalizing the inputs to each layer within each mini-batch

Batch Normalization

- We can normalize inputs to the network. Why not do that to the intermediate layer outputs
- Batch Normalization involves normalizing the inputs to each layer within each mini-batch
- Batch normalization is applied before activation

Figure 14: Batch Normalization

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000	0000000	0000000	0000	●oo	000
Outlir	ne					

1. Review

- 2. Working with Images
- 3. Convolution Neural Networks
- 4. Data Augmentation
- 5. Normalization

6. Dropout

7. Transfer Learning

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000	0000000	0000000	0000	ooo	000
Dropo	out					

This techinque is patented by Google

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000	00000000		0000	o●o	000
Dropo	out					

- This techinque is patented by Google
- Randomly disable neurons and their connections between each other

Figure 15: Dropout

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000	0000000	0000000	0000	o●o	000
Dropo	out					

- This techinque is patented by Google
- Randomly disable neurons and their connections between each other
- Without dropout, neurons can become too reliant on the outputs of specific other neurons, leading to overfitting

Figure 15: Dropout

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000	0000000	0000000	0000	oo●	000
Dropo	out					

This is the same as using a neural network with the same amount of layers but less neurons per layer.

Figure 16: Dropout

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000		0000000	0000	oo●	000
Dropo	out					

- This is the same as using a neural network with the same amount of layers but less neurons per layer.
- The more neurons the more powerful the neural network is, and the more likely it is to overfit.

Figure 16: Dropout

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000	0000000	0000000	0000	oo●	000
Dropo	out					

- This is the same as using a neural network with the same amount of layers but less neurons per layer.
- The more neurons the more powerful the neural network is, and the more likely it is to overfit.
- This also means that the model can not rely on any single feature, therefore would need to spread out the weights

Figure 16: Dropout

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000	0000000	0000000	0000	000	●00
Outlir	ne					

1. Review

- 2. Working with Images
- 3. Convolution Neural Networks
- 4. Data Augmentation
- 5. Normalization
- 6. Dropout

7. Transfer Learning

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000		0000000	0000	000	0●0
Transf	er Learning					

▶ Key Idea: "Standing on the shoulder of Giants"

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000	0000000	0000000	0000	000	0●0
Trans	fer Learning					

- ▶ Key Idea: "Standing on the shoulder of Giants"
- Training large computer vision models requires extensive hyperparameter search and multiple GPU running for weeks!

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000	00000000	0000000	0000	000	0●0
Transf	er Learning					

- Key Idea: "Standing on the shoulder of Giants"
- Training large computer vision models requires extensive hyperparameter search and multiple GPU running for weeks!
- Solution: Transfer Learning

Figure 17: Transfer Learning Source: Oreilly

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000	00000000	0000000	0000	000	00●
Transf	fer Learning					

Researchers now open-source their model weights, which can be a great initialization point for your applications

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000	0000000	0000000		000	00●
Transf	fer Learning					

- Researchers now open-source their model weights, which can be a great initialization point for your applications
- Often in practice, people preserve the feature extractor and re-train the classification head

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000	00000000		0000	000	00●
Trans	fer Learning					

- Researchers now open-source their model weights, which can be a great initialization point for your applications
- Often in practice, people preserve the feature extractor and re-train the classification head
- Freeze the early layers and replace the last few to match your needs.
 Only train the replaced layers

Review	Working with Images	Convolution Neural Networks	Data Augmentation	Normalization	Dropout	Transfer Learning
oo	0000	0000000	0000000		000	00●
Transf	fer Learning					

- Researchers now open-source their model weights, which can be a great initialization point for your applications
- Often in practice, people preserve the feature extractor and re-train the classification head
- Freeze the early layers and replace the last few to match your needs.
 Only train the replaced layers
- This is similar to transferring the knowledge from one network to another, thus the name transfer learning.