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The XOR Problem

▶ What is XOR?

▶ Why is this a problem?
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The XOR Problem

▶ What is XOR?
The logical operation eXclusive-OR outptus 1 when inputs differ, and
0 otherwise.

Input A Input B Output
0 0 0
0 1 1
1 0 1
1 1 0

Table 1: XOR Truth Table

▶ Why is this a problem?
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The XOR Problem

▶ Let’s see the decision boundary for AND and OR gates graphically

▶ What about the XOR gate?
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Figure 1: AND Gate Figure 2: OR Gate
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The XOR Problem

▶ What about the XOR gate?

Figure 3: XOR Gate Figure 4: XOR Gate
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Describing the General Limitation

▶ What about other distribution shapes?

Figure 5: Moons Figure 6: Cirles

▶ Can you suggest other shapes?
▶ What can we do about this?

▶ Non-Linear classifiers?
▶ Enter Neural Networks
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Neurons

▶ What is a Neuron?

▶ There are 2 definitions

▶ Biological Neuron
▶ Mathematical Neuron (Perceptron)
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Neurons

▶ What is a Neuron?
▶ There are 2 definitions

▶ Biological Neuron

▶ Mathematical Neuron (Perceptron)

Figure 7: Biological Neuron
Source: Arizona State University
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Neurons

▶ What is a Neuron?
▶ There are 2 definitions

▶ Biological Neuron
▶ Mathematical Neuron (Perceptron)

Figure 7: Biological Neuron
Source: Arizona State University Figure 8: Mathematical Neuron
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The Perceptron

▶ Looks similar to Linear Classification!
▶ How is this supposed to revolutionize Machine Learning?
▶ HINT: Howmany neurons are in your brain?

Does the Activation need to be Logistic/Sigmoid?
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y = φ(WT ·X)
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Neural Networks

▶ Solution 1: Connect many neurons together!
▶ This is the basic concept of a neural network
▶ Let’s see a Multi-Layer Perceptron/Fully Connected Feed-Forward

Network

Figure 9: Neural Network
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Activation Functions

▶ Solution 2: Use different Activation Functions

▶ These have a significant impact on the behavior of a Neuron
▶ Softmax activation is particularly important!
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Activation Functions

▶ Solution 2: Use different Activation Functions
▶ These have a significant impact on the behavior of a Neuron

▶ Softmax activation is particularly important!

Figure 10: Different Activation Functions
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Activation Functions

▶ Solution 2: Use different Activation Functions
▶ These have a significant impact on the behavior of a Neuron
▶ Softmax activation is particularly important!

Figure 10: Softmax Activation
Source: Towards Data Science
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MLP Example - 1

Figure 11: MLP Example 1

▶ What is the shape of input and output?

(3, 1) and (3, 1)
▶ Howmany parameters does the model have? 31
▶ What activation functions would you use for output layer? Softmax
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MLP Example - 1

Figure 11: MLP Example 1
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MLP Example - 2

Figure 12: MLP Example 2

▶ What is the shape of input and output?
▶ Howmany parameters does the model have?
▶ What activation functions would you use for output layer?
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MLP Example - 2

Figure 12: MLP Example 2

▶ What is the shape of input and output? (2, 1) and (1, 1)
▶ Howmany parameters does the model have? 13
▶ What activation functions would you use for output layer? Depends

on the task

NYU Tandon School of Engineering NYU K12 STEM Education: Machine Learning



Review Limitations of Linear Classifiers Neural Networks Stochastic Gradient Descent Overparameterized Models

Deep Neural Networks

Figure 13: Simple vs Deep Networks

▶ There are many choices for the number of hidden layers and number
of neurons per layer

▶ MLPs can approximate almost any continuous function
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Deep Learning

▶ What does deep learning mean?
▶ Deep: Neural network architectures with many hidden layers
▶ Learning: Optimizing model parameters given a dataset

▶ Generally, deeper models have more parameters and require larger
datasets to learn

▶ What problems can we expect?

▶ Overfitting
▶ Computational Limitations
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Computational Limitations

▶ For deep learning systems to perform well, we need large datasets -
▶ COCO - 330K images (25 GB)
▶ ImageNet - 14 million images (300 GB)

▶ Computational Challenges

▶ Memory Limitation - GeForce RTX 2080 Ti has 11 GBmemory, while
ImageNet is about 300 GB.

▶ Computation - Calculating gradients for the whole dataset is slow and
done several times.
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Stochastic Gradient Descent

▶ We don’t really need to calculate gradients from the whole data

▶ Calculate gradients from subsets of the whole dataset, one at a time

▶ The subset can fit in memory
▶ The gradient of subset is calculated fast

▶ But there is a tradeoff:

▶ Each gradient is a bit noisy
▶ More number of gradients need to be calculated

NYU Tandon School of Engineering NYU K12 STEM Education: Machine Learning



Review Limitations of Linear Classifiers Neural Networks Stochastic Gradient Descent Overparameterized Models

Stochastic Gradient Descent

▶ We don’t really need to calculate gradients from the whole data
▶ Calculate gradients from subsets of the whole dataset, one at a time

▶ The subset can fit in memory
▶ The gradient of subset is calculated fast

▶ But there is a tradeoff:

▶ Each gradient is a bit noisy
▶ More number of gradients need to be calculated

NYU Tandon School of Engineering NYU K12 STEM Education: Machine Learning



Review Limitations of Linear Classifiers Neural Networks Stochastic Gradient Descent Overparameterized Models

Stochastic Gradient Descent

▶ We don’t really need to calculate gradients from the whole data
▶ Calculate gradients from subsets of the whole dataset, one at a time

▶ The subset can fit in memory
▶ The gradient of subset is calculated fast

▶ But there is a tradeoff:

▶ Each gradient is a bit noisy
▶ More number of gradients need to be calculated

NYU Tandon School of Engineering NYU K12 STEM Education: Machine Learning



Review Limitations of Linear Classifiers Neural Networks Stochastic Gradient Descent Overparameterized Models

Stochastic Gradient Descent

▶ We don’t really need to calculate gradients from the whole data
▶ Calculate gradients from subsets of the whole dataset, one at a time

▶ The subset can fit in memory
▶ The gradient of subset is calculated fast

▶ But there is a tradeoff:

▶ Each gradient is a bit noisy
▶ More number of gradients need to be calculated

NYU Tandon School of Engineering NYU K12 STEM Education: Machine Learning



Review Limitations of Linear Classifiers Neural Networks Stochastic Gradient Descent Overparameterized Models

Stochastic Gradient Descent

▶ We don’t really need to calculate gradients from the whole data
▶ Calculate gradients from subsets of the whole dataset, one at a time

▶ The subset can fit in memory
▶ The gradient of subset is calculated fast

▶ But there is a tradeoff:
▶ Each gradient is a bit noisy
▶ More number of gradients need to be calculated

NYU Tandon School of Engineering NYU K12 STEM Education: Machine Learning



Review Limitations of Linear Classifiers Neural Networks Stochastic Gradient Descent Overparameterized Models

Stochastic Gradient Descent

▶ The descent ends up looking like this -
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Stochastic Gradient Descent

▶ Consider a subset of the original dataset having size B

▶ The loss is then calculated as -

L(W ) =
1

B

B∑
i=1

(yi − ŷi)
2

▶ The weight update rule then becomes -

Wnew = W − α∇L(W )
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Stochastic Gradient Descent

▶ For different sizes of B, we have -
▶ SGD: B = 1, and results in very noisy gradients
▶ Mini-batch GD: B is small (typically 32, 64, 128 for images), and

gradients have some noise
▶ GD: B = N , and gradients have no noise

▶ Even if feasible, GD is not a good idea. Noisy gradients can help

▶ escape from local minima
▶ escape from saddle points
▶ improve generalization
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Overparameterized Models

▶ Modern deep learning models are heavily overparameterized

▶ GPT-3: State-of-the-art language model, 175 billion parameters
▶ ResNet: State-of-the-art vision model, 10-60 million parameters

▶ Conventional wisdom: Such models overfit.
▶ It is not the case in practice!
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