

Introduction to Machine Learning

NYU K12 STEM Education: Machine Learning

Department of Electrical and Computer Engineering, NYU Tandon School of Engineering Brooklyn, New York

- ► Course Website
- ► Instructors:

Rugved Mhatre Akshath Mahajan rugved.mhatre@nyu.edu akshathmahajan@nyu.edu

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
●0	00000	00000000	000000	oo
Outline				

1. Review

- 2. Limitations of Linear Classifiers
- 3. Neural Networks
- 4. Stochastic Gradient Descent
- 5. Overparameterized Models

●●

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo	●0000	00000000	000000	oo
Outline				

1. Review

2. Limitations of Linear Classifiers

3. Neural Networks

4. Stochastic Gradient Descent

5. Overparameterized Models

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo	o●ooo	00000000	000000	oo
The XO	R Problem			

▶ What is XOR?

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo	o●ooo	00000000	000000	oo
The XO	R Problem			

What is XOR? The logical operation eXclusive-OR outptus 1 when inputs differ, and 0 otherwise.

Input A	Input B	Output
0	0	0
0	1	1
1	0	1
1	1	0

Table 1: XOR Truth Table

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo	o●ooo	00000000	000000	oo
The XOI	R Problem			

What is XOR? The logical operation eXclusive-OR outptus 1 when inputs differ, and 0 otherwise.

Input A	Input B	Output
0	0	0
0	1	1
1	0	1
1	1	0

Table 1: XOR Truth Table

▶ Why is this a problem?

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo		00000000	000000	oo
The XO	R Problem			

► Let's see the decision boundary for AND and OR gates graphically

▶ Let's see the decision boundary for AND and OR gates graphically

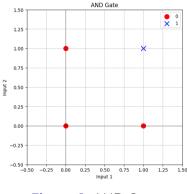


Figure 1: AND Gate

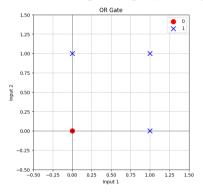


Figure 2: OR Gate

▶ Let's see the decision boundary for AND and OR gates graphically

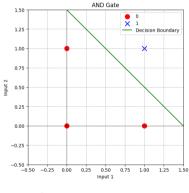


Figure 1: AND Gate

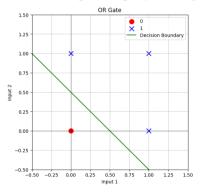


Figure 2: OR Gate

Let's see the decision boundary for AND and OR gates graphically

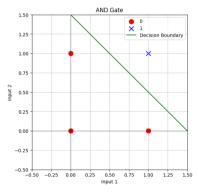


Figure 1: AND Gate

What about the XOR gate?

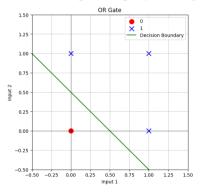


Figure 2: OR Gate

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo	000●0	00000000	000000	oo
_				

The XOR Problem

What about the XOR gate?

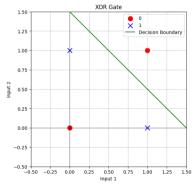


Figure 3: XOR Gate

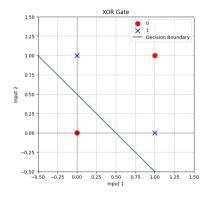
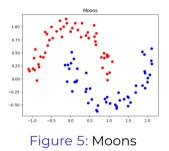



Figure 4: XOR Gate

Describing the General Limitation

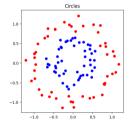
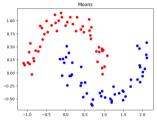
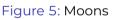




Figure 6: Cirles

Describing the General Limitation

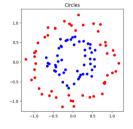
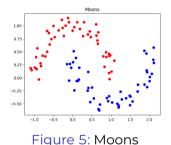



Figure 6: Cirles

Can you suggest other shapes?

Describing the General Limitation

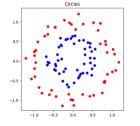
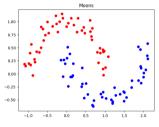



Figure 6: Cirles

- Can you suggest other shapes?
- What can we do about this?

Describing the General Limitation

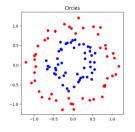
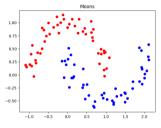



Figure 6: Cirles

- Can you suggest other shapes?
- What can we do about this?
 - Non-Linear classifiers?

Describing the General Limitation

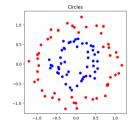


Figure 6: Cirles

- Can you suggest other shapes?
- What can we do about this?
 - Non-Linear classifiers?
 - Enter Neural Networks

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo	00000	●00000000	000000	oo
Outline				

1. Review

2. Limitations of Linear Classifiers

3. Neural Networks

4. Stochastic Gradient Descent

5. Overparameterized Models

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo	00000	o●ooooooo	000000	oo
Neuron				

▶ What is a Neuron?

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo	00000	o●ooooooo	000000	oo
Neuron				

- ▶ What is a Neuron?
- ► There are 2 definitions

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo	00000	o●ooooooo	000000	oo
Neuron	S			

- ▶ What is a Neuron?
- There are 2 definitions
 - Biological Neuron

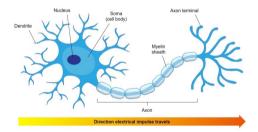


Figure 7: Biological Neuron Source: Arizona State University

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo	00000	o●ooooooo	000000	oo
Neuron				

- ▶ What is a Neuron?
- There are 2 definitions
 - Biological Neuron
 - Mathematical Neuron (Perceptron)

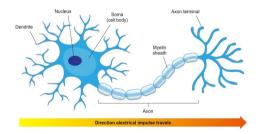
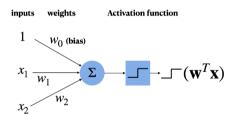
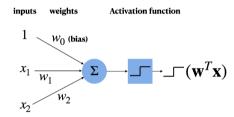
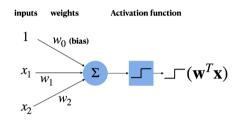


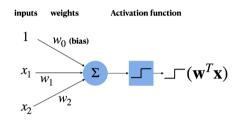
Figure 7: Biological Neuron Source: Arizona State University


Figure 8: Mathematical Neuron

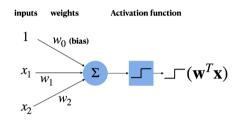
Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo	00000	00●000000	000000	oo

The Perceptron


Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo		00●000000	000000	oo
The Per	ceptron			

$$y = \varphi(\mathbf{W}^T \cdot \mathbf{X})$$

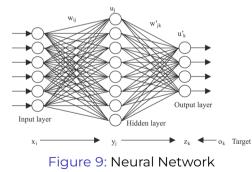
Looks similar to Linear Classification!


Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo	00000	00●000000	000000	oo
The De	rcentron			

$$y = \varphi(\mathbf{W}^T \cdot \mathbf{X})$$

- Looks similar to Linear Classification!
- How is this supposed to revolutionize Machine Learning?

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo	00000	00●000000	000000	oo
The De	rcentron			



$$y = \varphi(\mathbf{W}^T \cdot \mathbf{X})$$

- Looks similar to Linear Classification!
- How is this supposed to revolutionize Machine Learning?
- HINT: How many neurons are in your brain? Does the Activation need to be Logistic/Sigmoid?

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo	00000	000●00000	000000	oo
Neural	Networks			

- Solution 1: Connect many neurons together!
- ▶ This is the basic concept of a neural network
- Let's see a Multi-Layer Perceptron/Fully Connected Feed-Forward Network

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo	00000	00000000	000000	oo

Activation Functions

Solution 2: Use different Activation Functions

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo	00000	00000000	000000	oo
Activat	ion Functions			

- Solution 2: Use different Activation Functions
- ► These have a significant impact on the behavior of a Neuron

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo	00000	00000000	000000	oo

Activation Functions

- Solution 2: Use different Activation Functions
- These have a significant impact on the behavior of a Neuron

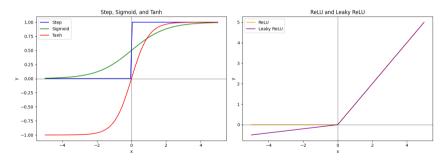


Figure 10: Different Activation Functions

- Solution 2: Use different Activation Functions
- ► These have a significant impact on the behavior of a Neuron
- Softmax activation is particularly important!

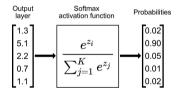
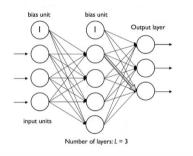
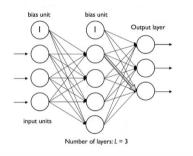



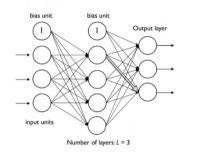
Figure 10: Softmax Activation Source: Towards Data Science

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo	00000	00000●000	000000	oo

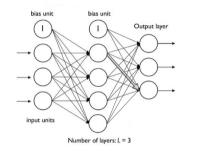


What is the shape of input and output?

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo	00000	00000●000	000000	oo



What is the shape of input and output?


Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo	00000	00000●000	000000	oo

- What is the shape of input and output? (3, 1) and (3, 1)
- How many parameters does the model have?

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo	00000	00000●000	000000	oo
MLP Ex	ample - 1			

- What is the shape of input and output? (3, 1) and (3, 1)
- How many parameters does the model have? 31
- What activation functions would you use for output layer?

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo	00000	00000●000	000000	oo

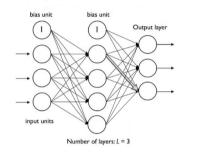


Figure 11: MLP Example 1

- What is the shape of input and output? (3, 1) and (3, 1)
- How many parameters does the model have? 31
- What activation functions would you use for output layer? Softmax

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo	00000	000000●00	000000	oo
MLP Ex	ample - 2			

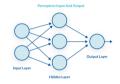


Figure 12: MLP Example 2

- What is the shape of input and output?
- How many parameters does the model have?
- What activation functions would you use for output layer?

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo	00000	000000●00	000000	oo
	ample - 2			

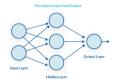
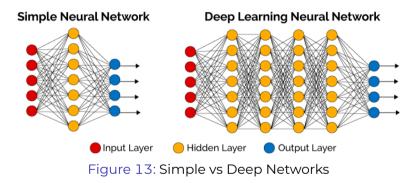
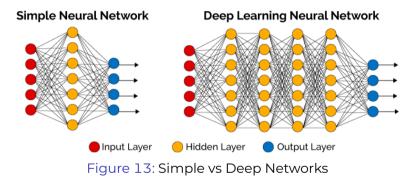



Figure 12: MLP Example 2

- What is the shape of input and output? (2, 1) and (1, 1)
- How many parameters does the model have? 13
- What activation functions would you use for output layer? Depends on the task


Deep Neural Networks

There are many choices for the number of hidden layers and number of neurons per layer

Deep Neural Networks

- There are many choices for the number of hidden layers and number of neurons per layer
- MLPs can approximate almost any continuous function

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo		0000000●	000000	oo
Deep Le	earning			

- What does deep learning mean?
 - Deep: Neural network architectures with many hidden layers
 - Learning: Optimizing model parameters given a dataset

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo	00000	0000000●	000000	oo
Deen I	earning			

- What does deep learning mean?
 - Deep: Neural network architectures with many hidden layers
 - Learning: Optimizing model parameters given a dataset
- Generally, deeper models have more parameters and require larger datasets to learn

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo	00000	00000000●	000000	oo
Deep L	earning			

- What does deep learning mean?
 - Deep: Neural network architectures with many hidden layers
 - Learning: Optimizing model parameters given a dataset
- Generally, deeper models have more parameters and require larger datasets to learn
- What problems can we expect?

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo	00000	00000000●	000000	oo
Deep L	earning			

- What does deep learning mean?
 - Deep: Neural network architectures with many hidden layers
 - Learning: Optimizing model parameters given a dataset
- Generally, deeper models have more parameters and require larger datasets to learn
- What problems can we expect?
 - Overfitting

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo	00000	00000000●	000000	oo
Deep L	earning			

- What does deep learning mean?
 - Deep: Neural network architectures with many hidden layers
 - Learning: Optimizing model parameters given a dataset
- Generally, deeper models have more parameters and require larger datasets to learn
- What problems can we expect?
 - Overfitting
 - Computational Limitations

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo	00000	00000000	●00000	oo
Outline				

1. Review

2. Limitations of Linear Classifiers

3. Neural Networks

4. Stochastic Gradient Descent

5. Overparameterized Models

- For deep learning systems to perform well, we need large datasets -
 - COCO 330K images (25 GB)
 - ImageNet 14 million images (300 GB)

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
00	00000	00000000	00000	oo

- For deep learning systems to perform well, we need large datasets -
 - COCO 330K images (25 GB)
 - ImageNet 14 million images (300 GB)
- Computational Challenges

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
00	00000	00000000	00000	oo

- For deep learning systems to perform well, we need large datasets -
 - COCO 330K images (25 GB)
 - ImageNet 14 million images (300 GB)
- Computational Challenges
 - Memory Limitation GeForce RTX 2080 Ti has 11 GB memory, while ImageNet is about 300 GB.

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo	00000	00000000	o●oooo	oo

- For deep learning systems to perform well, we need large datasets -
 - COCO 330K images (25 GB)
 - ImageNet 14 million images (300 GB)
- Computational Challenges
 - Memory Limitation GeForce RTX 2080 Ti has 11 GB memory, while ImageNet is about 300 GB.
 - Computation Calculating gradients for the whole dataset is slow and done several times.

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo	00000	00000000	oo●ooo	oo

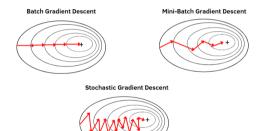
We don't really need to calculate gradients from the whole data

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo	00000	00000000	oo●ooo	oo

- ▶ We don't really need to calculate gradients from the whole data
- Calculate gradients from subsets of the whole dataset, one at a time

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo	00000	00000000	oo●ooo	oo

- We don't really need to calculate gradients from the whole data
- Calculate gradients from subsets of the whole dataset, one at a time
 - The subset can fit in memory
 - The gradient of subset is calculated fast


Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo	00000	00000000	00000	oo

- We don't really need to calculate gradients from the whole data
- Calculate gradients from subsets of the whole dataset, one at a time
 - The subset can fit in memory
 - The gradient of subset is calculated fast
- But there is a tradeoff:

- We don't really need to calculate gradients from the whole data
- Calculate gradients from subsets of the whole dataset, one at a time
 - The subset can fit in memory
 - The gradient of subset is calculated fast
- ▶ But there is a tradeoff:
 - Each gradient is a bit noisy
 - More number of gradients need to be calculated

The descent ends up looking like this -

- Consider a subset of the original dataset having size B
- ▶ The loss is then calculated as -

$$L(W) = \frac{1}{B} \sum_{i=1}^{B} (y_i - \hat{y}_i)^2$$

The weight update rule then becomes -

$$W_{new} = W - \alpha \nabla L(W)$$

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo	00000	000000000	00000●	oo

▶ For different sizes of *B*, we have -

- SGD: B = 1, and results in very noisy gradients
- Mini-batch GD: B is small (typically 32, 64, 128 for images), and gradients have some noise
- GD: B = N, and gradients have no noise

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo	00000	00000000		oo

▶ For different sizes of *B*, we have -

- SGD: B = 1, and results in very noisy gradients
- Mini-batch GD: B is small (typically 32, 64, 128 for images), and gradients have some noise
- GD: B = N, and gradients have no noise
- Even if feasible, GD is not a good idea. Noisy gradients can help
 - escape from local minima
 - escape from saddle points
 - improve generalization

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo	00000	00000000	000000	•0

1 Doviou

- 2. Limitations of Linear Classifiers
- 3. Neural Networks
- 4. Stochastic Gradient Descent
- 5. Overparameterized Models

Modern deep learning models are heavily overparameterized

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo	00000	00000000	000000	

- Modern deep learning models are heavily overparameterized
 - GPT-3: State-of-the-art language model, 175 billion parameters
 - ResNet: State-of-the-art vision model, 10-60 million parameters

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo	00000	00000000	000000	

- Modern deep learning models are heavily overparameterized
 - GPT-3: State-of-the-art language model, 175 billion parameters
 - ResNet: State-of-the-art vision model, 10-60 million parameters
- Conventional wisdom: Such models overfit.

Review	Limitations of Linear Classifiers	Neural Networks	Stochastic Gradient Descent	Overparameterized Models
oo	00000	00000000	000000	

- Modern deep learning models are heavily overparameterized
 - GPT-3: State-of-the-art language model, 175 billion parameters
 - ResNet: State-of-the-art vision model, 10-60 million parameters
- Conventional wisdom: Such models overfit.
- It is not the case in practice!