

Supervised Learning - Linear Classification

NYU K12 STEM Education: Machine Learning

Department of Electrical and Computer Engineering, NYU Tandon School of Engineering Brooklyn, New York

- ► Course Website
- ► Instructors:

Rugved Mhatre Akshath Mahajan rugved.mhatre@nyu.edu akshathmahajan@nyu.edu

Linear Classification	Lab I	Multiclass Classification	Lab II
●000000000000000	oo	ooooo	oo
Outline			

1. Linear Classification

2. Lab I

3. Multiclass Classification

4. Lab II

Linear Classification	Lab I	Multiclass Classification	Lab II
ooooooooooooooo	oo	ooooo	oo

Classification vs. Regression

Linear Classification	Lab I	Multiclass Classification	Lab II
oo●ooooooooooooo	oo	ooooo	oo

Classification

Given the dataset (x_i, y_i) for i = 1, 2, ..., N, find a function f(x) (model) so that it can predict the label \hat{y} for some input x, even if it is not in the dataset, i.e. $\hat{y} = f(x)$

- Positive : y = 1
- Negative : y = 0

Linear Classification	Lab I	Multiclass Classification	Lab II
০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	oo		oo

Linear Classification	Lab I	Multiclass Classification	Lab II
০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	oo	ooooo	oo

Evaluation Metric:

 $\label{eq:Accuracy} \mathsf{Accuracy} = \frac{\mathsf{Number of correct prediction}}{\mathsf{Total number of prediction}}$

Linear Classification	Lab I	Multiclass Classification	Lab II
০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	oo	ooooo	oo

Evaluation Metric:

 $\label{eq:Accuracy} \mbox{Accuracy} = \frac{\mbox{Number of correct prediction}}{\mbox{Total number of prediction}}$

What is the accuracy in this example?

Linear Classification	Lab I	Multiclass Classification	Lab II
၀၀၀၀•၀၀၀၀၀၀၀၀၀၀	oo	ooooo	oo

Accuracy =
$$\frac{\text{Number of correct prediction}}{\text{Total number of prediction}} = \frac{17}{20} = 0.85 = 85\%$$

Linear Classification	Lab I	Multiclass Classification	Lab II
ooooooooooooooo	oo	00000	oo
Need for a new Model			

What would happen if we used the linear regression model:

 $\hat{y} = w_0 + w_1 x$

Linear Classification	Lab I	Multiclass Classification	Lab II
000000000000000	oo	00000	oo
Need for a new Model			

What would happen if we used the linear regression model:

 $\hat{y} = w_0 + w_1 x$

- ▶ *y* is 0 or 1
- ▶ \hat{y} will take any value between $-\infty$ and ∞

Linear Classification	Lab I	Multiclass Classification	Lab II
ooooooooooooooo	oo	00000	oo
Need for a new Model			

What would happen if we used the linear regression model:

 $\hat{y} = w_0 + w_1 x$

- ▶ *y* is 0 or 1
- ▶ \hat{y} will take any value between $-\infty$ and ∞
- ▶ It will be hard to find w_0 and w_1 that make the prediction \hat{y} match the label y

Linear Classification	Lab I	Multiclass Classification	Lab II
၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀	oo	ooooo	oo
Sigmoid Function			

By appling the sigmoid function, we enforce $0 \le \hat{y} \le 1$

$$\hat{y} = \text{sigmoid}(w_0 + w_1 x) = \frac{1}{1 + e^{-(w_0 + w_1 x)}}$$

Linear Classification	Lab I	Multiclass Classification	Lab II
	oo	00000	oo
A new loss function			

Loss =
$$\frac{1}{N} \sum_{i=1}^{N} \left[-y_i \log \hat{y}_i - (1 - y_i) \log(1 - \hat{y}_i) \right]$$

Linear Classification	Lab I	Multiclass Classification	Lab II
	oo	00000	oo
A new loss function			

Loss =
$$\frac{1}{N} \sum_{i=1}^{N} \left[-y_i \log \hat{y}_i - (1 - y_i) \log(1 - \hat{y}_i) \right]$$

• What happens if $y_i = 0$?

Linear Classification	Lab I	Multiclass Classification	Lab II
	oo	00000	oo
A new loss function			

Loss =
$$\frac{1}{N} \sum_{i=1}^{N} \left[-y_i \log \hat{y}_i - (1 - y_i) \log(1 - \hat{y}_i) \right]$$

• What happens if $y_i = 0$?

$$[-y_i \log \hat{y}_i - (1 - y_i) \log(1 - \hat{y}_i)] = -\log(1 - \hat{y}_i)$$

Linear Classification	Lab I	Multiclass Classification	Lab II
	oo	00000	oo
A new loss function			

Loss =
$$\frac{1}{N} \sum_{i=1}^{N} \left[-y_i \log \hat{y}_i - (1 - y_i) \log(1 - \hat{y}_i) \right]$$

• What happens if
$$y_i = 0$$
?

$$[-y_i \log \hat{y}_i - (1 - y_i) \log(1 - \hat{y}_i)] = -\log(1 - \hat{y}_i)$$

• What happens if $y_i = 1$?

Linear Classification	Lab I	Multiclass Classification	Lab II
	oo	00000	oo
A new loss function			

Loss =
$$\frac{1}{N} \sum_{i=1}^{N} \left[-y_i \log \hat{y}_i - (1 - y_i) \log(1 - \hat{y}_i) \right]$$

• What happens if
$$y_i = 0$$
?

$$[-y_i \log \hat{y}_i - (1 - y_i) \log(1 - \hat{y}_i)] = -\log(1 - \hat{y}_i)$$

• What happens if $y_i = 1$?

$$[-y_i \log \hat{y}_i - (1 - y_i) \log(1 - \hat{y}_i)] = -\log(\hat{y}_i)$$

Linear Classification	Lab I	Multiclass Classification	Lab II
၀၀၀၀၀၀၀•၀၀၀၀၀၀၀	oo	00000	oo

MSE vs. Binary Cross Entropy Loss

- MSE of a logistic function has many local minima
- Binary Cross Entropy loss has only one minimum

Linear Classification	Lab I	Multiclass Classification	Lab II
ooooooooooooooo	oo	00000	oo
Classifier			

$$\hat{y} = \text{sigmoid}(w_0 + w_1 x) = \frac{1}{1 + e^{-(w_0 + w_1 x)}}$$

How to deal with uncertainty?

▶ Thanks to the sigmoid, $\hat{y} = f(x)$ is between 0 and 1

Linear Classification	Lab I	Multiclass Classification	Lab II
୦୦୦୦୦୦୦୦୦୦୦୦୦୦	oo	00000	oo
Classifier			

$$\hat{y} = \text{sigmoid}(w_0 + w_1 x) = \frac{1}{1 + e^{-(w_0 + w_1 x)}}$$

How to deal with uncertainty?

- ▶ Thanks to the sigmoid, $\hat{y} = f(x)$ is between 0 and 1
- ▶ If \hat{y} is close to 0, the data is probably negative
- If \hat{y} is close to 1, the data is probably positive
- If \hat{y} is around 0.5, we are not sure.

Linear Classification	Lab I	Multiclass Classification	Lab II
ooooooooooooooo	oo	00000	oo

Classifier

Linear Classification	Lab I	Multiclass Classification	Lab II
၀၀၀၀၀၀၀၀၀၀•၀၀၀၀	oo	00000	oo
Decision Boundary			

• Once, we have a classifier outputting a score $0 < \hat{y} < 1$, we need to create a decision rule.

Linear Classification	Lab I	Multiclass Classification	Lab II
၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀	oo	00000	oo

- Once, we have a classifier outputting a score $0 < \hat{y} < 1$, we need to create a decision rule.
- Let 0 < t < 1 be a **threshold**:
 - If $\hat{y} > t$, \hat{y} is classified as positive
 - If $\hat{y} < t$, \hat{y} is classified as negative

Linear Classification	Lab I	Multiclass Classification	Lab II
၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀	oo	00000	oo

- ▶ Once, we have a classifier outputting a score $0 < \hat{y} < 1$, we need to create a decision rule.
- Let 0 < t < 1 be a **threshold**:
 - If $\hat{y} > t$, \hat{y} is classified as positive
 - If $\hat{y} < t$, \hat{y} is classified as negative
- ▶ How to choose *t*?

Linear Classification	Lab I	Multiclass Classification	Lab II
oooooooooooooooo	oo	ooooo	oo

Linear Classification	Lab I	Multiclass Classification	Lab II
ooooooooooooooooo	oo	ooooo	oo

Performance metrics for a classifier

- Accuracy of a classifier: percentage of correct classification
- Why accuracy alone is not a good measure for assessing the model?

Linear Classification	Lab I	Multiclass Classification	Lab II
oooooooooooooooo	oo	ooooo	oo

Performance metrics for a classifier

- Accuracy of a classifier: percentage of correct classification
- Why accuracy alone is not a good measure for assessing the model?
 - Example: A rare disease occurs 1 in ten thousand people
 - A test that classifies everyone as free of the disease can achieve 99.999% accuracy when tested with people drawn randomly from the entire population

Linear Classification	Lab I	Multiclass Classification	Lab II
ooooooooooooooooo	oo	00000	oo

Types of Errors in Classification

- Correct predictions:
 - True Positive (TP) : Predict $\hat{y} = 1$ when y = 1
 - True Negative (TN) : Predict $\hat{y} = 0$ when y = 0
- Two types of errors:
 - False Positive/ False Alarm (FP): $\hat{y} = 1$ when y = 0
 - False Negative/ Missed Detection (FN): $\hat{y} = 0$ when y = 1

Linear Classification	Lab I	Multiclass Classification	Lab II
	oo	00000	oo

Exercise

- ▶ How many True Positives (TP) are there?
- How many True Negatives (TN) are there?
- How many False Positives (FP) are there?
- How many False Negatives (FN) are there?

Linear Classification	Lab I	Multiclass Classification	Lab II
ooooooooooooooooooo	oo	00000	oo

Exercise

- ► True Positives (TP) = 8
- True Negatives (TN) = 9
- False Positives (FP) = 1
- ► False Negatives (FN) = 2

Linear Classification	Lab I	Multiclass Classification	Lab II
000000000000000	oo	ooooo	oo
Other Metrics			

Sensitivity/Recall/TPR (How many positives are detected among all positive?)

$\frac{\mathsf{TP}}{\mathsf{TP}+\mathsf{FN}}$

Precision (How many detected positives are actually positive?)

 $\frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FP}}$

Linear Classification	Lab I	Multiclass Classification	Lab II
0000000000000000	●o	00000	oo
Outline			

1. Linear Classification

2. Lab I

3. Multiclass Classification

4. Lab II

Linear Classification	Lab I	Multiclass Classification	Lab II
oooooooooooooooo	o●	ooooo	oo

Diagnosing Breast Cancer

- We're going to use the breast cancer dataset to predict whether the patients' scans show a malignant tumour or a benign tumour.
- ▶ Let's try to find the best linear classifier using logistic regression.
- Open Diagnosing Breast Cancer Demo from Course Website

Linear Classification	Lab I	Multiclass Classification	Lab II
000000000000000	oo	●0000	oo

Outline

1. Linear Classification

2. Lab I

3. Multiclass Classification

4. Lab II

Linear Classification	Lab I	Multiclass Classification	Lab II
oooooooooooooooo	oo	o●ooo	oo

Multiclass Classification

Previous Model:

$$f(x) = \sigma(\phi(x)w)$$

- Representing Multiple Classses:
 - One-hot / 1-of-K vectors, ex : 4 Class

- Class
$$l: y = [1, 0, 0, 0]$$

- Class 2 :
$$y = [0, 1, 0, 0]$$

- Class 3 :
$$y = [0, 0, 1, 0]$$

- Class 4 : y = [0, 0, 0, 1]

Linear Classification	Lab I	Multiclass Classification	Lab II
oooooooooooooooo	oo	oo●oo	oo

Multiclass Classfication

Multiple outputs:

 $f(x) = \operatorname{softmax}(\phi(x)W)$

▶ Shape of $\phi(x)W$: $(N,K) = (N,D) \times (D,K)$

Softmax:

$$\mathsf{softmax}(z_k) = rac{e^{z_k}}{\sum_j e^{z_j}}$$

Linear Classification	Lab I	Multiclass Classification	Lab II
၀၀၀၀၀၀၀၀၀၀၀၀၀၀၀	oo	ooo●o	oo
Softmax Example			

Linear Classification	Lab I	Multiclass Classification	Lab II
oooooooooooooooo	oo	oooo●	oo
Cross-Entropy			

- Multple Outputs: $\hat{y}_i = \text{softmax}(\phi(x_i)W)$
- Cross-Entropy:

$$J(W) = -\sum_{i=1}^{N} \sum_{k=1}^{K} y_{ik} \log(\hat{y_{ik}})$$

▶ Example, K = 4, if $y_i = [0, 0, 1, 0]$ then,

$$\sum_{k=1}^{K} y_{ik} \log(\hat{y_{ik}}) = \log(\hat{y_{i3}})$$

Linear Classification	Lab I	Multiclass Classification	Lab II
oooooooooooooooo	oo	00000	●0

Outline

1. Linear Classification

2. Lab I

3. Multiclass Classification

4. Lab II

Linear Classification	Lab I	Multiclass Classification	Lab II
oooooooooooooooo	oo	ooooo	o●

Iris Dataset

Open Iris Dataset Demo from Course Website