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Given the dataset (z;,y;) fori =1,2,..., N, find a function f(z) (model) so
that it can predict the label j for some input z, even if it is not in the

dataset, i.e. § = f(x)
— Positive:y =1
—~ Negative:y =0

NYU Tandon School of Engineering

Multiclas

Linear Classification

s Classification

@ Fositives
@ Negatives

NYU K12 STEM Education: Machine Learning



Linear Classification
000@00000000000000

Linear Classification

@ Fositives
@ Negatives

ndon School of Enginee



Linear Classification

s Classification

000@00000000000000

Linear Classification

2
o Fositives
\ Negatives
s \ ® Mg
\
o\
10
.e
05
.
N e® .
00 \°
. o\
. \ .
o5 \
\ .
o .
-10 .
.
.

15 °

-20 °

25

20 “is 1o o5 00 05 10 s 20

» Evaluation Metric:

Accuracy =

Number of correct prediction

Total number of prediction
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» Evaluation Metric:

> What is the accuracy in this example?

Accuracy =

Number of correct prediction

Total number of prediction
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Number of correct prediction 17
Accuracy = — = —=0.8=285
Y Total number of prediction 20 %
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> What would happen if we used the linear regression model:

U= wo +wix
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> What would happen if we used the linear regression model:
U= wo +wix

> yisOorl
> 4 will take any value between —oo and oo
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> What would happen if we used the linear regression model:
U= wo +wix

> yisOorl
> 4 will take any value between —oo and oo

> |t will be hard to find wy and w; that make the prediction § match the
label y
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By appling the sigmoid function, we enforce 0 < g <1

1

§ = sigmoid(wg + wiz) = 1T o-(wotwia)

Sigmoid Function
oY=l ]

don School of Engineeri NYU K12 STEM Educatio

ine Learning



Linear Classification ab s Classification

0000000 @0000000000

» Binary Cross Entropy Loss:

N
1 . .
Loss = N E 1 [~yiloggi — (1 — i) log(1 — 4i)]
1=
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» Binary Cross Entropy Loss:
1 N
Loss = + Zl [—yilog i — (1= yi) log(1 — 4i)

» What happens ify; =0?
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» Binary Cross Entropy Loss:
1 N
Loss = + Zl [—yilog i — (1= yi) log(1 — 4i)

» What happens ify; =0?

[~yiloggi — (1 — yi)log(1 — ;)] = —log(1 — ;)
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» Binary Cross Entropy Loss:
1 N
Loss = + Zl [—yilog i — (1= yi) log(1 — 4i)

» What happens ify; =0?

[~yiloggi — (1 — yi)log(1 — ;)] = —log(1 — ;)

» What happens ify; =1?
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» Binary Cross Entropy Loss:

N
Loss = Z —y;log g — (1 — ;) log(1 — ;)]

» What happens ify; =0?

[~yiloggi — (1 — yi)log(1 — ;)] = —log(1 — ;)

» What happens ify; =1?

[~yiloggi — (1 — y;) log(1 — 9;)] = — log(¥:)
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» MSE of a logistic function has many local minima
» Binary Cross Entropy loss has only one minimum
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1

g = sigmoid(wg + wiz) = 1T o-(wotwia)

How to deal with uncertainty?
» Thanks to the sigmoid, § = f(z) is between 0 and 1
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g = sigmoid(wg + wiz) = T e ormm
How to deal with uncertainty?

» Thanks to the sigmoid, § = f(z) is between 0 and 1

> If j is close to 0, the data is probably negative

> If yis close to 1, the data is probably positive

» If yis around 0.5, we are not sure.
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Classifier with Sigmoid Shading
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» Once, we have a classifier outputting a score 0 < y < 1, we need to
create a decision rule.
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» Once, we have a classifier outputting a score 0 < y < 1, we need to
create a decision rule.
> Let0<t<1beathreshold:

— If § > t, g is classified as positive
- If g < t, g is classified as negative
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» Once, we have a classifier outputting a score 0 < y < 1, we need to
create a decision rule.

> Let0 <t < 1be athreshold:

— If § > t, g is classified as positive
- If g < t, g is classified as negative

» How to choose t?
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Feature 2

Classifier (t=0.2)

Classifier (t=0.5)

Classifier (t=0.8)
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> Accuracy of a classifier: percentage of correct classification
> Why accuracy alone is not a good measure for assessing the model?
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Multiclass Classification

> Accuracy of a classifier: percentage of correct classification
> Why accuracy alone is not a good measure for assessing the model?

> Example: A rare disease occurs 1 in ten thousand people
> A test that classifies everyone as free of the disease can achieve
99.999% accuracy when tested with people drawn randomly from the

entire population
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> Correct predictions:
— True Positive (TP) : Predict gy =1wheny =1
— True Negative (TN) : Predict § = 0wheny =0
» Two types of errors:

— False Positive/ False Alarm (FP):§ = 1 when y =0
— False Negative/ Missed Detection (FN):§ = 0wheny =1
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» How many True Positives (TP) are there?

» How many True Negatives (TN) are there?
» How many False Positives (FP) are there?
» How many False Negatives (FN) are there?
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> True Positives (TP) = 8

» True Negatives (TN) =9
> False Positives (FP) =1
> False Negatives (F
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» Sensitivity/Recall/TPR (How many positives are detected among all

positive?)
TP
TP+ FN
> Precision (How many detected positives are actually positive?)
TP
TP+ FP
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> We're going to use the breast cancer dataset to predict whether the
patients’ scans show a malignant tumour or a benign tumour.

> Let's try to find the best linear classifier using logistic regression.
» Open Diagnosing Breast Cancer Demo from Course Website
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> Previous Model:
f(z) = o(d(z)w)

> Representing Multiple Classses:

— One-hot/ 1-of-K vectors, ex : 4 Class

- Class1:y=11,0,0,0]
Class 2:y =0,1,0,0]
- Class 3:y=10,0,1,0]
- Class 4 :y =10,0,0,1]
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> Multiple outputs:
f(z) = softmax(¢(z)W)
» Shape of ¢(x)W: (N,K) = (N,D) x (D, K)

> Softmax:
ek

Zj e

softmax(zx) =
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» Multple Outputs: ; = softmax(¢(z;)W)
> Cross-Entropy:

N K
Z > ik log (i)
i=1 k=1

» Example, K =4, ify; =1[0,0,1,0] then,

> ik log(yik) = log(yis)
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> Open Iris Dataset Demo from Course Website
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