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▶ Statistics - Mean, Variance, Covariance

▶ Types of Supervised Learning problems:

– Regression
– Classification

▶ Linear Regression

– Error Functions
– Least Square Solution

▶ Multivariable Linear Regression
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Polynomial Fitting

▶ We have been using straight lines to fit our data. But it doesn’t work
well every time

▶ Some data have more complex relation that cannot be fitted well
using a straight line

▶ Can we use some other model to fit this data?
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Polynomial Fitting

Can we use a polynomial to fit our data?

Polynomial: A sum of different powers of a variable

Example:
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Polynomial Fitting

Polynomials of x: ŷ = w0 + w1x+ w2x
2 + · · ·+ wmxm

m is called the order of the polynomial.

The process of fitting a polynomial is similar to linearly fitting
multivariable data.
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Polynomial Fitting

In matrix-vector form:
ŷ1
ŷ2
...

ŷN

 =


1 x1 x21 · · · xm1
1 x2 x22 · · · xm2
...

...
... . . . ...

1 xN x2N · · · xmN



w0

w1
...

wm


This can still be written as: Ŷ = XW

Loss:
J(W ) =

1

N
||Y −XW ||2
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Polynomial Fitting

The ith row of the design matrix X is simply a transformed feature:

ϕ(xi) = (1, xi, x
2
i , · · · , xmi )

Original Design Matrix: 
1 x1
1 x2
...

...
1 xN
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Polynomial Fitting

Design matrix after feature transformation:
1 x1 x21 · · · xm1
1 x2 x22 · · · xm2
...

...
... . . . ...

1 xN x2N · · · xmN


For the polynomial fitting, we just added columns of features that are
powers of the original feature.
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Linear Regression

Model:
ŷ = W Tϕ(x)

Loss:
J(W ) =

1

N
||Y −XW ||2

Find W that minimizes J(W )
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Overfitting

▶ We learned how to fit our data using polynomials of different order
▶ With a higher model order, we can fit the data with increasing

accuracy
▶ As you increase the model order, at certain point it is possible find a

model that fits your data perfectly (ie. zero error)
▶ What could be the problem?
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Overfitting

Which of these model do you think is the best? Why?
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Overfitting

▶ Open Fit a Polynomial Demo from Course Website
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Overfitting

▶ We are only fitting our model
using data that is given

▶ Data usually contains noise
▶ When a model becomes too

complex, it will start to fit the
noise in the data

▶ What happens if we apply our
model to predict some data
that the model has never seen
before? It will not work well.

▶ This is called overfitting

NYU Tandon School of Engineering NYU K12 STEM Education: Machine Learning



Review Polynomial Fitting Regularization Optimization

Solution to Overfitting

▶ Split the data set into a train set and a test set
▶ Train set will be used to train the model
▶ The test set will not be seen by the model during the training process
▶ Use test set to evaluate the model when a model is trained

NYU Tandon School of Engineering NYU K12 STEM Education: Machine Learning



Review Polynomial Fitting Regularization Optimization

Solution to Overfitting

With the training and test sets shown, which one do you think is the
better model now?
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Train and Test Loss

▶ Plot of train loss and test loss for different model order
▶ Initially both train and test loss go down as model order increase
▶ But at a certain point, test loss start to increase because of overfitting
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Regularization

How can we prevent overfitting without knowing the model order
before-hand?

▶ Regularization: methods to prevent overfitting
▶ One way to regularize is by model order selection.
▶ Is there another way?
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Regularization

How can we prevent overfitting without knowing the model order
before-hand?

▶ Regularization: methods to prevent overfitting
▶ One way to regularize is by model order selection.
▶ Is there another way?
▶ We can change the cost function
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Weight Based Regularization

▶ Looking back at the
polynomial overfitting

▶ Notice that weight value
increases with overfitting
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Weight Based Regularization

New Cost Function:

J(W ) =
1

N
||Y −XW ||2 + λ||W ||2

▶ Penalize complexity by
simultaneously minimizing
weight values.

▶ We call λ a hyper-parameter
– λ determines relative

importance
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Tuning Hyper-parameters

▶ Motivation: never determine a hyper-parameter based on training
data

▶ Hyper-Parameter: a parameter of the algorithm that is not a
model-parameter solved for in optimization.
Example: λ weight regularization value vs. model weights (W )

▶ Solution: Split dataset into three:
– Training Set: to compute the model parameters (W )
– Validation Set: to tune the hyper-parameters (λ)
– Testing Set: to compute the performance of the ML algorithm (MSE)
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Overfitting and Regularization

▶ Open Overfitting, Weight Regularization Demo from Course Website
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Non-linear Optimization

▶ Cannot rely on closed form solutions
– Computation Efficiency: operations like inverting a matrix is not

efficient
– For more complex problems such as neural networks, a closed form

solution is not always available
▶ Need an optimization technique to find an optimal solution

– Machine learning practitioners use gradient based methods
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Gradient Descent Algorithm

Update Rule:

Repeat{
Wnew = W − α∇J(W )

}

α is the learning rate
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Loss Function Contours

▶ Most loss function contours
are not perfectly parabolic

▶ Our goal is to find a solution
that is very close to global
minimum by the right choice
of hyper-parameters.

NYU Tandon School of Engineering NYU K12 STEM Education: Machine Learning



Review Polynomial Fitting Regularization Optimization

Understanding Learning Rate
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Gradient Descent Animations
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