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2. Polynomial Fitting
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> We have been using straight lines to fit our data. But it doesn't work
well every time

> Some data have more complex relation that cannot be fitted well
using a straight line

» Can we use some other model to fit this data?
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Can we use a polynomial to fit our data?

Polynomial: A sum of different powers of a variable

Example:
.
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Polynomials of z: § = wg + w1z + waz? + - - - + wpa™
m is called the order of the polynomial.

The process of fitting a polynomial is similar to linearly fitting
multivariable data.
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In matrix-vector form:

~ 2 m
U1 1 x x% R 1
Y2 | 1 2z 25 -+ zf*
~ 2 m
YN 1 oy oy -0 2y

~

This can still be written as: Y = XW

Loss: )
JW) = —|lY — XW||?
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The it row of the design matrix X is simply a transformed feature:
Qb(xl) = (1,%,’, x?, T ’x;n)

Original Design Matrix:

1 X
1 T
1 an
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Design matrix after feature transformation:

1 oz 23 - a2l
1z 22 - 2p
1 2 .. pm

For the polynomial fitting, we just added columns of features that are
powers of the original feature.
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Model:
§=Ww"¢(x)
Loss: )
JW) ==||Y — XW|]?
W)=~ I

Find W that minimizes J(W)
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> We learned how to fit our data using polynomials of different order

> With a higher model order, we can fit the data with increasing
accuracy

> Asyou increase the model order, at certain point it is possible find a
model that fits your data perfectly (ie. zero error)

» What could be the problem?
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» Open Fit a Polynomial Demo from Course Website
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> We are only fitting our model

15

using data that is given X
» Data usually contains noise =1 VeVl |
» When a model becomes too 05

complex, it will start to fit the ol T .

noise in the data
» What happens if we apply our w03 .

model to predict some data 1ol 08 e

that the model has never seen e D et Data

before? It will not work well. s o p i 7

> This is called overfitting
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> Split the data set into a train set and a test set

> Train set will be used to train the model

> The test set will not be seen by the model during the training process
> Use test set to evaluate the model when a model is trained
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With the training and test sets shown, which one do you think is the
better model now?
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» Plot of train loss and test loss for different model order
» Initially both train and test loss go down as model order increase
> But at a certain point, test loss start to increase because of overfitting
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3. Regularization
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How can we prevent overfitting without knowing the model order
before-hand?

» Regularization: methods to prevent overfitting
> One way to regularize is by model order selection.
> |s there another way?

NYU Tandon School of Engineering NYU K12 STEM Education: Machine Learning



Polynomial Fitting Regularization

0080000

How can we prevent overfitting without knowing the model order
before-hand?

» Regularization: methods to prevent overfitting

» One way to regularize is by model order selection.
> |s there another way?

» We can change the cost function

NYU Tandon School of Engineering NYU K12 STEM Education: Machine Learning



Regularization

000@000

> Looking back at the
polynomial overfitting

> Notice that weight value

increases with overfitting ; o -

Table of the coefficients w™ for ‘ M=0 M=1 M=6 M=9

polynomials of various order. i | 019 082 031 035
Observe how the typical mag- 0

nitude of the coefficients in- i 121 799 23237

creases dramatically as the or- W3 -2543 -5321.83

der of the polynomial increases.  w? 1737 4856831

w} -231639.30

w? 640042.26

w? -1061800.52

w? 1042400.18

wy -557682.99

w} 125201.43
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New Cost Function:

1

J(W) = —HY—XW|’2+AHW’|2 Table of the coefficients w* for M = Ind=—-0c0 InA=-18 InA=0
N 9 polynomials with various values for = x 035 035 0.13
the regularization parameter A. Note 0 232'37 4'74 0'05

that In\ = —oo corresponds to a wi - y e
. . model with no regularization, i.e., to W3 -5321.83 -0.77 -0.06
» Penalize compl exity by the graph at the bottom right in Fig- w3 |  48568.31 3197 -0.05
ure 1.4. We see that, as the value of w} -231639.30 -3.89 -0.03

H =yl 171 X increases, the typical magnitude of * N
simu |ta neous |y minimizin g the coefficients gets smaller. wi 640042.26 35.28 0.02
. w§ | -1061800.52 41.32 -0.01
weight values. wi | 1042400.18 4595 -0.00
wj | -557682.99 -91.53 0.00
» We call A a hyper-parameter wy | 12520143 7268 001
— A determines relative
importance
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> Motivation: never determine a hyper-parameter based on training
data

» Hyper-Parameter: a parameter of the algorithm that is not a
model-parameter solved for in optimization.
Example: A weight regularization value vs. model weights (W)

> Solution: Split dataset into three:

— Training Set: to compute the model parameters (W)
— Validation Set: to tune the hyper-parameters (\)
- Testing Set: to compute the performance of the ML algorithm (MSE)
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> Open Overfitting, Weight Regularization Demo from Course Website
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4. Optimization
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» Cannot rely on closed form solutions
— Computation Efficiency: operations like inverting a matrix is not

efficient
— For more complex problems such as neural networks, a closed form

solution is not always available
» Need an optimization technique to find an optimal solution
- Machine learning practitioners use gradient based methods
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Gradient Descent

Update Rule: w

Repeat{ @
Wnev\/ =W — OZVJ(W>

40

Loss (/)

— Loss Function
@ Gradient Descent Steps
@ Initial Point
Final Point
@ Minimum Point
Gradient

a is the learning rate

-100 75  -50  -25 00 25 50 75 100
Weight (w)
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Gradient Descent on a General Loss Function

» Most loss function contours .
are not perfectly parabolic .
$
» Our goalis to find a solution /

that is very close to global
minimum by the right choice
of hyper-parameters.

10
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Gradient Descent
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