

Supervised Learning - Linear Regression

NYU K12 STEM Education: Machine Learning

Department of Electrical and Computer Engineering, NYU Tandon School of Engineering Brooklyn, New York

- ► Course Website
- ► Instructors:

Rugved Mhatre Akshath Mahajan rugved.mhatre@nyu.edu akshathmahajan@nyu.edu

Review	Python	Statistics	Supervised Learning	Linear Regression	Multivariable Linear Regression
●0	000	00000000000	000	00000000000000000000	
Outline					

1. Review

2. Python

3. Statistics

4. Supervised Learning

5. Linear Regression

6. Multivariable Linear Regression

Review	Python	Statistics	Supervised Learning	Linear Regression	Multivariable Linear Regression
o●	000	00000000000	ooo	00000000000000000000000	ooo
Day 1 -	Review				

Machine Learning is a field of study that gives computers the ability to learn without being explicitly programmed.

Review o●	Python ooo	Statistics 00000000000	Supervised Learning ooo	Linear Regression	Multivariable Linear Regression
Day 1 -	Review				

- Machine Learning is a field of study that gives computers the ability to learn without being explicitly programmed.
- Two types of Machine Learning Problems:

Review	Python	Statistics	Supervised Learning	Linear Regression	Multivariable Linear Regression
o●	000	00000000000	ooo	00000000000000000000000	ooo
Day 1 -	Review				

- Machine Learning is a field of study that gives computers the ability to learn without being explicitly programmed.
- Two types of Machine Learning Problems:
 - Supervised Learning

Review	Python	Statistics	Supervised Learning	Linear Regression	Multivariable Linear Regression
o⊙	ooo	00000000000	ooo	000000000000000000000	ooo
Day 1 -	Review				

- Machine Learning is a field of study that gives computers the ability to learn without being explicitly programmed.
- Two types of Machine Learning Problems:
 - Supervised Learning
 - Unsupervised Learning

Review	Python	Statistics	Supervised Learning	Linear Regression	Multivariable Linear Regression
o●	ooo	00000000000	000	00000000000000000000000	
Day 1 -	Review				

- Machine Learning is a field of study that gives computers the ability to learn without being explicitly programmed.
- Two types of Machine Learning Problems:
 - Supervised Learning
 - Unsupervised Learning
- Artificial Intelligence vs. Machine Learning vs. Deep Learning

Review	Python	Statistics	Supervised Learning	Linear Regression	Multivariable Linear Regression
o●	ooo	00000000000	000	000000000000000000000	
Day 1 -	Review				

- Machine Learning is a field of study that gives computers the ability to learn without being explicitly programmed.
- Two types of Machine Learning Problems:
 - Supervised Learning
 - Unsupervised Learning
- Artificial Intelligence vs. Machine Learning vs. Deep Learning
- Artificial Narrow Intelligence (ANI) vs. Artificial General Intelligence (AGI)

Review	Python	Statistics	Supervised Learning	Linear Regression	Multivariable Linear Regression
oo	●oo	00000000000	ooo	0000000000000000000000	
Outline					

1. Review

2. Python

3. Statistics

4. Supervised Learning

5. Linear Regression

6. Multivariable Linear Regression

Review	Python	Statistics	Supervised Learning	Linear Regression	Multivariable Linear Regression
oo	ooo	00000000000	000	00000000000000000000	

Why did we use Vectors and Matrices?

Open Vectorize Programming Demo from Course Website

Review	Python	Statistics	Supervised Learning	Linear Regression	Multivariable Linear Regression
oo	oo●	00000000000	000	0000000000000000000000	
Plotting	Function	าร			

- Open Plotting Functions Demo from Course Website
- Generate and plot the following functions in Python:
 - Scatter plot of points: (0,1), (2,3), (5,2), (4,1)
 - Straight Line: y = mx + b
 - Sine-wave: y = sin(x)
 - Polynomial e.g. $y = x^3 + 2$
 - Exponential e.g. $y = e^{-2x}$
 - Choose a function of your own
- Use Wikipedia and NumPy documentation to search for mathematical formulas and python functions

Review	Python	Statistics	Supervised Learning	Linear Regression	Multivariable Linear Regression
oo	ooo	●00000000000	ooo	00000000000000000000000	
Outline					

1. Review

2. Python

3. Statistics

4. Supervised Learning

5. Linear Regression

6. Multivariable Linear Regression

Review	Python	Statistics	Supervised Learning	Linear Regression	Multivariable Linear Regression
oo	000	0000000000	ooo	0000000000000000000000	000
Mean					

The mean, or average, is the sum of all the values in a dataset divided by the number of values. It provides a measure of the central tendency of the data.

$$\mathsf{Mean}(\mu) = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Example:

For the dataset X = [2, 4, 6, 8, 10],

$$\mu = \frac{2+4+6+8+10}{5} = 6$$

Review	Python	Statistics	Supervised Learning	Linear Regression	Multivariable Linear Regression
oo	000	00000000000	ooo		ooo
Varianc					

Variance measures the spread of the data points around the mean. It indicates how much the data varies from the mean.

Variance
$$(\sigma^2) = rac{1}{N}\sum_{i=1}^N (x_i-\mu)^2$$

Example:

For the dataset X = [2, 4, 6, 8, 10],

$$\sigma^2 = \frac{(2-6)^2 + (4-6)^2 + (6-6)^2 + (8-6)^2 + (10-6)^2}{5} = 8$$

Review	Python	Statistics	Supervised Learning	Linear Regression	Multivariable Linear Regression
oo	ooo	000●00000000	000	0000000000000000000	000

Mean and Variance Visualization

Review	Python	Statistics	Supervised Learning	Linear Regression	Multivariable Linear Regression
oo	ooo	00000000000	000	0000000000000000000	000

Mean and Variance Visualization

Review	Python	Statistics	Supervised Learning	Linear Regression	Multivariable Linear Regression
oo	ooo	ooooo●oooooo	000	0000000000000000000	000

Mean and Variance Visualization

Standard deviation is the square root of the variance. It provides a measure of the spread of the data points in the same units as the data itself.

Standard Deviation(σ) = $\sqrt{Variance}$

Example:

Using the variance calculated previously,

$$\sigma = \sqrt{8} \approx 2.83$$

Review	Python	Statistics	Supervised Learning	Linear Regression	Multivariable Linear Regression
oo	000	ooooooo●oooo	ooo	000000000000000000	

Standard Deviation Visualization

Review	Python	Statistics	Supervised Learning	Linear Regression	Multivariable Linear Regression
oo	ooo	00000000●000	000	0000000000000000000	000

Standard Deviation Visualization

Review	Python	Statistics	Supervised Learning	Linear Regression	Multivariable Linear Regression
oo	000	ooooooooooooo	000	0000000000000000000000	
Covaria	nce				

Covariance measures the degree to which two variables change together. If the covariance is positive, the variables tend to increase together; if negative, one variable tends to increase when the other decreases.

Covariance(Cov(X,Y)) =
$$\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu_X)(y_i - \mu_Y)$$

Example:

For the datasets X = [2, 4, 6] and Y = [3, 6, 9],

$$\operatorname{Cov}(X,Y) = \frac{(2-4)(3-6) + (4-4)(6-6) + (6-4)(9-6)}{3} = 6$$

Review	Python	Statistics	Supervised Learning	Linear Regression	Multivariable Linear Regression
oo	ooo	oooooooooooo	000	00000000000000000000	

Covariance Visualization

ReviewPythonStatisticsSupervised LearningLinear RegressionMultivariable Linear Regression0000000000000000000000000

Looking at our ice-breaker data in spreadsheets

Open Ice Breaker Dataset Demo from Course Website

Review	Python	Statistics	Supervised Learning	Linear Regression	Multivariable Linear Regression
oo	ooo	00000000000	●00	0000000000000000000	000
Outline					

1. Review

2. Python

3. Statistics

4. Supervised Learning

5. Linear Regression

6. Multivariable Linear Regression

Types of Supervised Learning Problems

Regression

- Used when the output label is a continuous variable
- For example, linear regression, predicts a continuous target variable as a linear combination of input features.

Types of Supervised Learning Problems

Classification

- Used when the output label is categorical.
- For example, linear classification, splits the data into different categories

Review	Python	Statistics	Supervised Learning	Linear Regression	Multivariable Linear Regression
oo	000	00000000000	ooo	•000000000000000000	
Outline					

1. Review

2. Python

3. Statistics

4. Supervised Learning

5. Linear Regression

6. Multivariable Linear Regression

Review	Python	Statistics	Supervised Learning	Linear Regression	Multivariable Linear Regression
oo	ooo	00000000000	000	000000000000000000000000000000000000	

- Consider a function y = 2x + 1
- Here we introduce a new notation y = f(x) = 2x + 1
- What this means is that we have a function f(x) which has x as its variable.
- If we have different x values we will have different values of f(x)

Review	Python	Statistics	Supervised Learning	Linear Regression	Multivariable Linear Regression
oo	ooo	00000000000	000	000000000000000000000000000000000000	

- For f(x) = 2x + 1 and setting x = 1 we have f(x) = 3
- For f(x) = 2x + 1 and setting x = 0 we have f(x) = 1
- For f(x) = 2x + 1 and setting x = -1.5 we have f(x) = -2

- We believe that datasets are a representation of underlying models.
- Models which can be represented as functions of features i.e. input to output mappings.
- For example, we can build a model to forecast weather, we can use the features humidity, current temperature and wind speed to estimate what the temperature will be tomorrow.
- Here we have f(x) representing the tomorrow's temperature and x being a vector containing humidity, current temperature and wind speed.

Review	Python	Statistics	Supervised Learning	Linear Regression	Multivariable Linear Regression
oo	ooo	00000000000	000	00000000000000000	

- Our task here is to figure out what f(x) is, using the data available to us.
- Here f(x) is called a model.
- ▶ In other words, we want to find a model that fits the data.

It would be easier to have a "framework" of the model ready and find the model parameters using the data.

$$- f(x) = w_1 x + w_0 - f(x) = w_2 x^2 + w_1 x + w_0 - f(x) = \frac{1}{e^{-(w_1 x + w_0)} + 1}$$

- The numbers w_0 , w_1 and w_2 are called model parameters.
- We often write the model as f(x; w), stacking all parameters to a vector w.

Review	Python	Statistics	Supervised Learning	Linear Regression	Multivariable Linear Regression
oo	000	00000000000	000	00000000000000000	

Structure of a dataset

- In a dataset we have many data.
- We can represent each piece of data as (x_i, y_i) , i = 1, 2, 3, ...
- \blacktriangleright x_i is called the feature and y_i is called the label.
- ▶ The relationship between x_i and y_i and the model f is $f(x_i) = y_i$

Review	Python	Statistics	Supervised Learning	Linear Regression	Multivariable Linear Regression
oo	ooo	00000000000	000	000000000000000000	

How would you fit a line?

Can you find a line that passes through (0,0) and (1,1)?

- The "framework" of the model is $f(x) = w_1 x + w_0$
- ▶ The data is (x = 0, f(x) = y = 0) and (x = 1, f(x) = y = 1).
- The process of finding a model to fit the data is to find the values of w₁ and w₀.

Review	Python	Statistics	Supervised Learning	Linear Regression	Multivariable Linear Regression
oo	ooo	00000000000	000	000000000000000000000000000000000000	000

What model do we use for this dataset?

- Open Linear Regression Demo from Course Website
- Can you find a line that goes through ALL of the data points? Why?

Review	Python	Statistics	Supervised Learning	Linear Regression	Multivariable Linear Regression
oo	ooo	oooooooooooo	000	0000000000000000000	

Is Your Model a Good Fit?

- How would you determine if your model is a good fit or not?
 - How will you determine this?
 - Is there a quantitative way?
- We now introduce a new notation $f(x_i) = \hat{y}_i$ here the $\hat{\cdot}$ represents $f(x_i)$ is a prediction of y_i .

- An error function quantifies the discrepancy between your model and the data.
 - They are non-negative, and go to zero as the model gets better.
- Common Error Functions:
 - Mean Squared Error:

$$\mathsf{MSE} = \frac{1}{N} \sum_{i=1}^{N} ||y_i - \hat{y}_i||^2$$

- Mean Absolute Error:

$$\mathsf{MAE} = \frac{1}{N}\sum_{i=1}^{N}|y_i - \hat{y_i}|$$

In later units, we will refer to these as cost functions or loss functions.

Review	Python	Statistics	Supervised Learning	Linear Regression	Multivariable Linear Regression
oo	ooo	00000000000	000	000000000000000000000000000000000000	ooo
l inear B	Pearessio	'n			

- ▶ Linear models: For scalar-valued feature x, this is $f(x) = w_1x + w_0$
- One of the simplest machine learning model, yet very powerful.

Review	Python	Statistics	Supervised Learning	Linear Regression	Multivariable Linear Regression
oo	ooo	00000000000	000	00000000000000000000000	

Least Square Solution

Model:

$$f(x) = w_1 x + w_0$$

Loss:

$$J(w_0, w_1) = \frac{1}{N} \sum_{i=1}^{N} ||y_i - f(x_i)||^2$$

▶ Optimization: Find w_0 , w_1 such that $J(w_0, w_1)$ is the least possible value (hence the name "least square").

Review	Python	Statistics	Supervised Learning	Linear Regression	Multivariable Linear Regression
oo	000	00000000000	ooo	000000000000000000000000000000000000	000

Loss Landscape

$$J(w_0, w_1) = \frac{1}{N} \sum_{i=1}^{N} ||y_i - f(x_i)||^2$$

NYU Tandon School of Engineering

NYU K12 STEM Education: Machine Learning

Review	Python	Statistics	Supervised Learning	Linear Regression	Multivariable Linear Regression
oo	ooo	00000000000	000	00000000000000000000	

Least Square Solution: Using Pseudo-Inverse

For N data points (x_i, y_i) we have,

$$\hat{y_1} = w_0 + w_1 x_1$$

 $\hat{y_2} = w_0 + w_1 x_2$
 \vdots
 $\hat{y_N} = w_0 + w_1 x_N$

Review Python Statistics Supervised Learning Linear Regression Multivariable Linear Regression

Least Square Solution: Using Pseudo-Inverse

In matrix form we have,

$$\begin{bmatrix} \hat{y_1} \\ \hat{y_2} \\ \vdots \\ \hat{y_N} \end{bmatrix} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_N \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}$$

We can write it as $\hat{Y} = X \times W$. We call X the design matrix.

Least Square Solution: Using Pseudo-Inverse

We can put the desired labels in matrix form as well:

$$Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$$

• Our goal is to minimize the error between Y and \hat{Y} which can be written as $||Y-\hat{Y}||^2$

Exercise: Verify

$$||Y - \hat{Y}||^2 = ||Y - XW||^2 = \sum_{i=1}^{N} ||y_i - (w_0 + w_1 x_i)||^2$$

Review	Python	Statistics	Supervised Learning	Linear Regression	Multivariable Linear Regression
oo	000	00000000000	ooo	0000000000000000	000

Linear Least Square

$$\min_W \frac{1}{N} ||Y - XW||^2$$

The solution looks like this,

$$W = (X^T X)^{-1} X^T Y$$

Review	Python	Statistics	Supervised Learning	Linear Regression	Multivariable Linear Regression
oo	ooo	00000000000	ooo	00000000000000000000	•00
Outline					

1. Review

2. Python

3. Statistics

4. Supervised Learning

5. Linear Regression

6. Multivariable Linear Regression

Review	Python	Statistics	Supervised Learning	Linear Regression	Multivariable Linear Regression
oo	000	00000000000	000	000000000000000000	

Multivariable Linear Regression

What if we have multivariable data with x being a vector?

Example:

$$x_i = \begin{bmatrix} x_{i1} \\ x_{i2} \end{bmatrix}$$

$$\hat{y}_1 = w_0 + w_1 x_{11} + w_2 x_{12}$$
$$\hat{y}_2 = w_0 + w_1 x_{21} + w_2 x_{22}$$
$$\vdots$$
$$\hat{y}_N = w_0 + w_1 x_{N1} + w_2 x_{N2}$$

The model can be written in matrix-vector form as:

$$\begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_N \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & x_{12} \\ 1 & x_{21} & x_{22} \\ \vdots & \vdots & \vdots \\ 1 & x_{N1} & x_{N2} \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix}$$

Solution remains the same $W = (X^T X)^{-1} X^T Y$

 Exercise: Open Multivariable Linear Regression Demo from Course Website