

Introduction to Machine Learning

NYU K12 STEM Education: Machine Learning

Department of Electrical and Computer Engineering, NYU Tandon School of Engineering Brooklyn, New York

- ► Course Website
- ► Instructors:

Rugved Mhatre Akshath Mahajan rugved.mhatre@nyu.edu akshathmahajan@nyu.edu

- Name
- ▶ (Rising) Grade Number
- In which city/town are you currently living?
- What is your favourite movie?
- What is the IMDB score of this movie!
- ▶ What is the category of this movie? (thriller/drama/action, etc.)
- Rate your coding experience from 1 (no experience) to 5 (plenty of experience)!
- We will visualize this dataset using Python tomorrow! (Link to sheet)

- Form Teams: Create groups of 4 students each.
- Assign Roles: Select one team member to be the guesser. The remaining three members will be the actors.
- Pick a Sentence: A random sentence will be drawn from the bag. The sentence should be hidden from the guesser.
- Act It Out: The actors will silently act out the sentence together.
- The guesser must try to guess the sentence based on the actors' performance.
- Each team has 2 minutes to make as many correct guesses as possible.

Introduction •oooooooooooooooo	Course Outline 000			
Outline				

1. Introduction

- 2. Course Outline
- 3. Matrices
- 4. Vectors
- 5. Matrix Multiplication
- 6. Matrix Inverse
- 7. Python

Introduction	Course Outline			Python
00000000000000				

Traditional Programming

Introduction	Course Outline					Python
000000000000000000000000000000000000000	000	00000000000	00000000	000000000	000000	000000

Traditional Programming

Introduction	Course Outline			Python
000000000000000000				

Challenges

Introduction 00000000000000	Course Outline 000			

Machine Learning

Introduction 00000000000000	Course Outline 000			
Machine Lear	ning			

Definition

Machine Learning is a field of study that gives computers the ability to learn without being explicitly programmed.

Example: Digit Recognition

Introduction
ocoococococoCourse Outline
ocoMatrices
MatricesVectors
ocococococoMatrix Multiplication
ocococococoMatrix Inverse
ocococococoPython
ococococococo

Example: Image Classification

airplane automobile bird cat deer dog frog horse ship truck

But why is Machine Learning important now?

Big Data

- Massive storage, large data centers
- Massive connectivity
- Sources of data from internet and elsewhere
- Computational advances
 - GPUs and hardware
 - Distributed machines, clusters

Introduction 000000000000000	Course Outline 000			
Labeled Data				

Introduction	Course Outline					
000000000000000	000	00000000000	00000000	000000000	000000	000000

How are labels generated?

Types of Machine Learning Problems

Supervised Learning

- Model is trained on labeled datasets
- Learn a mapping from inputs to outputs

Types of Machine Learning Problems

Supervised Learning

- Model is trained on labeled datasets
- Learn a mapping from inputs to outputs

Unsupervised Learning

- Model is trained on unlabeled datasets
- Model infers patterns and structure from the data

Introduction	Course Outline			Python
0000000000000000				

Unsupervised Learning Example

Artificial Intelligence vs. Machine Learning vs. Deep Learning

Introduction	Course Outline			Python
000000000000000000000000000000000000000				

A break to look at cats

Introduction 00000000000000	Course Outline 000			

Example: Dall.E

	Course Outline ●00			
Outline				

1. Introduction

2. Course Outline

- 3. Matrices
- 4. Vectors
- 5. Matrix Multiplication
- 6. Matrix Inverse
- 7. Python

	Course Outline o●o			
Week 1				

- Day 1 : Introduction to Machine Learning
- Day 2 : Supervised Learning Linear Regression
- Day 3 : Over-fitting and Regularization
- Day 4 : Supervised Learning Classification
- ▶ Day 5 : Mini Project

	Course Outline oo●			
Week 2				

- Day 6 : Introduction to Deep Learning and Neural Networks
- Day 7 : Convolutional Neural Networks
- Day 8 : Advanced Deep Learning Topics
- Day 9 : Ethics and Future of AI
- Day 10 : Final Project

Course Outline 000	Matrices ●0000000000		

Outline

- 1. Introduction
- 2. Course Outline
- 3. Matrices
- 4. Vectors
- 5. Matrix Multiplication
- 6. Matrix Inverse
- 7. Python

	Course Outline	Matrices				Python
0000000000000000000	000	0000000000	00000000	000000000	000000	000000

Why do we learn Vectors and Matrices?

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 02 05 09 09 10 10 10 10 10 10 10 10 05 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 10 10 09 05 05 05 07 10 10 10 10 02 00 00 00 00 00 0.8 0.8 0.8 10 10 10 10 0.9 07 01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0 0.2 0.2 0.2 0.2 0.2 0.2 0.0 1.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 1.0 1.0 0.6 0.5 00 00 00 00 00 00 00 00 09 10 07 01 00 00 00 00 00 00 00 00 00 00

	Course Outline 000	Matrices oo●ooooooooo		
Matrices				

A matrix is a rectangular array of numbers (or other mathematical objects).

$$A = \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix} \quad M = \begin{bmatrix} 1 & 3 \\ 2 & -1 \\ -4 & 5 \end{bmatrix}$$

	Course Outline 000	Matrices 000●00000000		
Size of a Matri	x			

The size of a matrix is defined by the number of rows and columns it contains.

Example:

Matrix A has 2 rows and 2 columns, hence the size of the matrix is 2×2

$$A = \begin{bmatrix} 1 & 3\\ 2 & -1 \end{bmatrix}$$

Course Outline 000	Matrices 0000●0000000		

Size of a Matrix

Similarly, matrix M is of size \cdots ?

$$M = \begin{bmatrix} 1 & 3\\ 2 & -1\\ -4 & 5 \end{bmatrix}$$

	Course Outline 000	Matrices ooooooooooo		
Size of a Matr	ix			

In general, a matrix A of size $m \times n$ is given as,

a_{11}	a_{12}	• • •	a_{1n}
a_{21}	a_{22}	• • •	a_{2n}
:	÷	۰.	÷
a_{m1}	a_{m2}	• • •	a_{mn}

where a_{ij} represents the i^{th} row and j^{th} column element.

Course Outline 000	Matrices 000000000000		

Size of a Matrix

$$M = \begin{bmatrix} 1 & 3\\ 2 & -1\\ -4 & 5 \end{bmatrix}$$

•
$$m_{31} = \cdots ?$$

• $m_{22} = \cdots ?$

	Course Outline 000	Matrices oooooooooooo		
Matrix Additio	n			

Matrices of the same size may be added together, element-wise.

$$A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 8 \\ 7 & 1 \end{bmatrix}$$
$$\therefore C = A + B = \begin{bmatrix} 1+0 & 1+8 \\ 2+7 & 1+1 \end{bmatrix} = \begin{bmatrix} 1 & 9 \\ 9 & 2 \end{bmatrix}$$

Similarly, matrices of the same size may be subtracted together, element-wise.

$$\therefore D = A - B = \begin{bmatrix} 1 - 0 & 1 - 8 \\ 2 - 7 & 1 - 1 \end{bmatrix} = \begin{bmatrix} 1 & -7 \\ -5 & 0 \end{bmatrix}$$

Introduction Course Outline Matrices Vectors Matrix Multiplication Matrix Inverse Python

Matrices can be scaled by a number. The resulting matrix is computed element-wise. This operation is called scalar multiplication.

$$A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \quad c = 3$$

$$\therefore c \cdot A = \begin{bmatrix} 1 \times 3 & 1 \times 3 \\ 2 \times 3 & 1 \times 3 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 6 & 3 \end{bmatrix}$$

Course Outline 000	Matrices ooooooooooooo		

Matrices Exercise

$$\begin{bmatrix} 1 & 3 \\ 2 & -1 \\ 4 & 7 \end{bmatrix} + \begin{bmatrix} 9 & 2 \\ -7 & 6 \\ 3 & 1 \end{bmatrix} = \cdots?$$
$$\begin{bmatrix} 1 & 3 \\ 2 & -1 \\ 4 & 7 \end{bmatrix} - \begin{bmatrix} 9 & 2 \\ -7 & 6 \\ 3 & 1 \end{bmatrix} = \cdots?$$
$$2 \cdot \begin{bmatrix} 1 & 9 \\ 3 & -2 \end{bmatrix} = \cdots?$$

The transpose of a matrix is formed by swapping rows and columns.

Example:

$$M = \begin{bmatrix} 1 & 3\\ 2 & -1\\ -4 & 5 \end{bmatrix}$$
$$\therefore M^{T} = \begin{bmatrix} 1 & 2 & -4\\ 3 & -1 & 5 \end{bmatrix}$$

A transposed matrix is denoted as M^T

	Course Outline 000	Vectors ●oooooooo		
Outline				

1. Introductio

2. Course Outline

3. Matrices

4. Vectors

- 5. Matrix Multiplication
- 6. Matrix Inverse

7. Python

	Course Outline 000	Vectors oooooooo		
Vectors				

Matrices with a single row are called **row vectors**. A row vector is a $1 \times n$ matrix, consisting of a single row of n elements.

$$U = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$$

	Course Outline 000	Vectors oo●oooooo		
Vectors				

Matrices with a single column are called **column vectors**. A column vector is a $n \times 1$ matrix, consisting of a single column of n elements.

(We consider column vectors by default)

$$V = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$$

	Course Outline 000	Vectors ooo●ooooo		
Vector Additic	n			

Vectors of the same dimensions may be added together, element-wise.

Example:

$$V = \begin{bmatrix} 1\\2\\3 \end{bmatrix} \quad W = \begin{bmatrix} 4\\5\\6 \end{bmatrix}$$
$$\therefore X = V + W = \begin{bmatrix} 1+4\\2+5\\3+6 \end{bmatrix} = \begin{bmatrix} 5\\7\\9 \end{bmatrix}$$

.

	Course Outline 000	Vectors oooo●oooo		
Vector Subtra	ction			

Similarly, vectors of the same dimensions may be subtracted together, element-wise.

$$\therefore Y = W - V = \begin{bmatrix} 4 - 1\\ 5 - 2\\ 6 - 3 \end{bmatrix} = \begin{bmatrix} 3\\ 3\\ 3 \end{bmatrix}$$

Vectors can be scaled by a number. The resulting vector is computed element-wise.

Example:

$$V = \begin{bmatrix} 1\\2\\3 \end{bmatrix} \quad c = 5$$

$$\therefore c \cdot V = \begin{bmatrix} 1 \times 5\\2 \times 5\\3 \times 5 \end{bmatrix} = \begin{bmatrix} 5\\10\\15 \end{bmatrix}$$

.

 Introduction
 Course Outline
 Matrices
 Vectors
 Matrix Multiplication
 Matrix Inverse
 Python

 00000000000
 000
 000000000
 000000000
 00000000
 0000000
 0000000

 Vectors Dot Product

Vector Dot Product (a.k.a. **Inner Product**) is the sum of the products of the corresponding entries of the two vectors.

$$\therefore V \cdot W = \begin{bmatrix} 1\\2\\3 \end{bmatrix} \cdot \begin{bmatrix} 4\\5\\6 \end{bmatrix} = 1 \times 4 + 2 \times 5 + 3 \times 6 = 4 + 10 + 18 = 32$$

The **norm of a vector** (
$$l^2$$
-norm) for a vector $Z = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ is given as,
 $||Z||_2 = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5$

The l^2 -norm is denoted as $||Z||_2$ or ||Z||

The **squared norm** is the square of the norm of a vector.

$$||Z||_2^2 = \left(\sqrt{3^2 + 4^2}\right)^2 = 25$$

The squared norm is denoted as $||Z||_2^2$ or $||Z||^2$

	Course Outline 000	Vectors 00000000		
Vector Exercis				

$$P = \begin{bmatrix} 3\\2\\9\\4 \end{bmatrix} \quad Q = \begin{bmatrix} 1\\9\\0\\3 \end{bmatrix}$$

$$\blacktriangleright 3Q + 2P = \cdots?$$

$$\blacktriangleright Q \cdot Q = \cdots?$$

$$\blacktriangleright ||Q||^2 = \cdots?$$

$$\blacktriangleright P \cdot Q = \cdots?$$

$$\blacktriangleright ||P|| \cdot ||Q|| = \cdots ?$$

Course Outline 000		Matrix Multiplication •00000000	

Outline

- 1. Introduction
- 2. Course Outline
- 3. Matrices
- 4. Vectors
- 5. Matrix Multiplication
- 6. Matrix Inverse
- 7. Python

	Course Outline 000		Matrix Multiplication	
Matrix Multip	lication			

Two matrices, A and B, can be multiplied together provided their shapes meet the criteria:

- Number of columns of A = Number of rows of B
- Result is a matrix of shape (Number of rows of A× Number of columns of B)

Matrix Multiplication

Example:

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \quad B = \begin{bmatrix} -3 & 1 \\ 0 & -1 \\ 3 & 1 \end{bmatrix}$$

Size of A is 2×3 , size of B is 3×2 . Therefore, the resulting matrix C is of size 2×2

$$A \times B = C = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix}$$

The entries of C are given by the dot product of the corresponding row of A and the corresponding column of B.

Matrix Multiplication

$$c_{11} = \begin{bmatrix} 2 & -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} -3 \\ 0 \\ 3 \end{bmatrix} = 2 \times -3 + -1 \times 0 + 0 \times 3 = -6$$
$$c_{12} = \begin{bmatrix} 2 & -1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} = 2 \times 1 + -1 \times -1 + 0 \times 1 = 3$$
$$c_{21} = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} -3 \\ 0 \\ 3 \end{bmatrix} = -1 \times -3 + 0 \times 0 + 1 \times 3 = 6$$
$$c_{22} = \begin{bmatrix} -1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} = -1 \times 1 + 0 \times -1 + 1 \times 1 = 0$$

Matrix Multiplication

$$\therefore C = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} = \begin{bmatrix} -6 & 3 \\ 6 & 0 \end{bmatrix}$$

To sum up: Multiplication of two matrices is defined if and only if the number of columns of the left matrix is the same as the number of rows of the right matrix. If A is an $m \times n$ matrix and B is an $n \times p$ matrix, then their matrix product $A \times B$ is the $m \times p$ matrix whose entries are given by dot product of the corresponding row of A and the corresponding column of B.

Course Outline 000		Matrix Multiplication	

Matrix Multiplication Exercise

$$\begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix} \times \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \cdots ?$$
$$\begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix} \times \begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix} = \cdots ?$$
$$\begin{bmatrix} 2 & 4 \\ 3 & 2 \end{bmatrix} \times \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix} = \cdots ?$$

	Course Outline 000		Matrix Multiplication	
Matrix Multipl	ication			

- In general, $A \times B \neq B \times A$
- $\blacktriangleright \ (A \times B)^T = B^T \times A^T$

Matrix Multiplication Exercise

$$X = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 0 & -1 \end{bmatrix} \quad Y = \begin{bmatrix} 3 & 1 \\ 0 & -1 \\ -2 & 3 \end{bmatrix} \quad Z = \begin{bmatrix} 1 \\ 4 \\ 6 \end{bmatrix}$$

- $\blacktriangleright XY = \cdots?$
- $\blacktriangleright YX = \cdots?$
- $\blacktriangleright Z^T Y = \cdots?$

	Course Outline 000		Matrix Multiplication 000000000	
Identity Matrix	ĸ			

- An identity matrix of size n is a $n \times n$ square matrix with ones on the main diagonal and zeros elsewhere.
- ▶ When an identity matrix is multiplied with another matrix *A*, the result is equal to *A*. It is analogous to multiplying a number by 1.

Example: Identity matrix of size 2 is given as,

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

	Course Outline 000		Matrix Multiplication	
Identity Matri	x			

So, if we have matrix A,

$$A = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}$$

$$\therefore I \times A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} = A$$

Course Outline 000		Matrix Inverse ●00000	

Outline

- 1. Introduction
- 2. Course Outline
- 3. Matrices
- 4. Vectors
- 5. Matrix Multiplication

6. Matrix Inverse

7. Python

	Course Outline 000		Matrix Inverse o●oooo	
Inverse of a M	latrix			

A inverse of a matrix, denoted as A^{-1} , is a matrix such that it satifies the following condition:

$$A \times A^{-1} = A^{-1} \times A = I$$

where A is a $n \times n$ invertible matrix, and I is the identity matrix of size n.

	Course Outline 000		Matrix Inverse oo●ooo	
Inverse of a M	atrix			

Think of it like a reciprocal of a number.

A number x and it's reciprocal is given as $x^{-1} = \frac{1}{x}$ are multiplied together, the result is 1.

For example, x = 2

$$x \times x^{-1} = x \times \frac{1}{x} = 2 \times \frac{1}{2} = 1$$

	Course Outline 000		Matrix Inverse ooo●oo	
Inverse of a M	atrix			

Inverse of a matrix is hard to compute by hand. But for a 2×2 size matrix, the formula is given as,

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{a \cdot d - b \cdot c} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

The matrix inverse does not always exist. Can you tell when that is the case for 2×2 matrices based on the formula given above?

Inverse of Matrix Application

When is matrix inverse useful? We can use it to solve systems of linear equations!

Consider the following equations:

$$\begin{aligned} x + 2y &= 5\\ 3x + 5y &= 13 \end{aligned}$$

This can be written in a matrix form as,

$$\begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ 13 \end{bmatrix}$$

IntroductionCourse OutlineMatricesVectorsMatrix MultiplicationMatrix InversePython00

Inverse of Matrix Application

$$\begin{bmatrix} 1 & 2\\ 3 & 5 \end{bmatrix}^{-1} \begin{bmatrix} 1 & 2\\ 3 & 5 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix} = \begin{bmatrix} 1 & 2\\ 3 & 5 \end{bmatrix}^{-1} \begin{bmatrix} 5\\ 13 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix} = \begin{bmatrix} 1 & 2\\ 3 & 5 \end{bmatrix}^{-1} \begin{bmatrix} 5\\ 13 \end{bmatrix}$$
$$\therefore \begin{bmatrix} x\\ y \end{bmatrix} = \begin{bmatrix} 1 & 2\\ 3 & 5 \end{bmatrix}^{-1} \begin{bmatrix} 5\\ 13 \end{bmatrix}$$

Now, we can easily solve the system of equations and get the solution for \boldsymbol{x} and \boldsymbol{y}

	Course Outline 000			Python ●ooooo
Outline				

1. Introduction

2. Course Outline

3. Matrices

4. Vectors

5. Matrix Multiplication

6. Matrix Inverse

7. Python

Course Outline 000			Python o●oooo

Setting up Python

- ► Google Colab:
 - Interactive programming online
 - No installation
 - Free GPU for 12 hours
- Your task:
 - Register a Google account and set up Google Colab
 - Run print('hello world!')
 - Open Python Basics Demo from Course Website

Course Outline 000			Python oo●ooo

Python Basics

Program

- We write operations to be executed on variables
- Variables
 - Referencing and interacting with items in the program

If-Statements

- Conditionally execute lines of code
- Functions
 - Reuse lines of code at any time

Course Outline 000			Python ooo●oo

Python Basics

Lists

- Store an ordered collection of data
- ► Loops
 - Conditionally re-execute code
- Strings
 - Words and sentences are treated as lists of characters
- Classes (advanced)
 - Making your own data-type. Functions and variables made to be associated with it too.

	Course Outline 000			Python oooo●o
Python Basics				

- Write a function to find the second largest number in a list (Hint: use sort())
- Define a class Student
- Use the __init()__ function to assign the values of two attributes of the class: name and grade
- Define a function study() with an argument time in minutes. When calling this function, it should be printed "(the student's name) has studied for (time) minutes"

	Course Outline 000			Python oooooo
NumPy Basics				

A Python package is a collection of code people wrote for other users to run directly. Today, we learn how to use the package NumPy for linear algebra.

- Open NumPy Basics Demo from Course Website
- Your task: use NumPy functions to compute the exercises we did earlier this morning. Compare the results.